Answer:
m = 77.75 g
Explanation:
Here we know that at equilibrium the temperature of the system will be 10 degree C
so heat given by hot latte = heat absorbed by the ice
now we have
heat given by latte = 


now heat absorbed by ice is given as



now by heat balance we have



Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
Answer:
There are 12 oxygen atoms in 8C12O.
When a wave is too steep to support itself, the wave front collapses therefore creating a break.
<h3>What is a Wave?</h3>
This is defined as the propagation of disturbance from one place to another in an organized manner.
In situations where the wave is too steep to support itself there is a break in the wavefront which advances up the shoreline.
Read more about Wave here brainly.com/question/6069116