Question three is C and question 4 is b
hey you look nice (pic).
According to Newton’s first law, if no force is applied to a ball, it will continue moving at the same speed and direction as it did before. When we put the ball on the grass it stays in its place, namely it stays in zero motion since no force is applied to it. However, after we kick the ball, it will continue moving in the direction we kicked it. Its speed will drop gradually, due to friction (a force applied on the ball in the opposite direction to its motion), but the direction of its motion will remain the same.
According to Newton’s second law, a force applied to an object changes that object’s acceleration – namely, the rate at which the speed of the object changes. When we kick the ball, the force we apply to it causes it to accelerate from a speed of 0 to a speed of dozens of kilometers per hour. When the ball is released from the foot, it begins to decelerate (negative acceleration) due to the force of friction that is exerted upon it (as we observed in the previous example). If we were to kick a ball in outer space, where there is no friction, it would accelerate during the kick, and then continue moving at a constant speed in the direction that we kicked at, until it hits some other object or another force is applied to it.
The answer should be B. According to the conservation of energy, the energy cannot be created nor destroyed, but it can be transformed. Since the object is moving down, that means its height is decreasing, causing the potential energy decreasing and the kinetic energy increasing to fulfill the conservation law.
Answer:
Relation between initial speed of bullet and height h is given as

Explanation:
As we know that system of block and bullet swings up to height h after collision
So we have

so we have

so speed of the block + bullet just after the impact is given by above equation
Now we also know that there is no force on the system of bullet + block in the direction of motion
So we can use momentum conservation

now we have
