The three properties of electromagnetic waves are; they travel at the speed of light, they include ultraviolet waves, and they can transfer energy through empty space.
<h2>Further Explanation</h2><h3>A wave</h3>
- A wave is a transmission of a disturbance. It involves transmission of energy from one point which is the source to another point.
- Waves may be classified depending on the need for a transmission medium or based on the vibration of particles relative to the direction of wave motion.
- Waves may be either transverse or longitudinal based on the direction of wave motion relative to the vibration of particles
- Additionally waves may be classified as either electromagnetic wave or mechanical based on the need for a transmission medium.
<h3>Electromagnetic waves </h3>
- Electromagnetic waves are types of waves that do not require a material medium for transmission.
- All waves of the electromagnetic spectrum are electromagnetic transverse waves that do not require a material medium for transmission.
- They include; radio waves, microwaves, infrared, visible light, ultra-violet, x-rays, and gamma rays.
- All waves of the electromagnetic spectrum travel with a speed of light, 3.0 x10^8 m/s.
- Additionally, electromagnetic waves possess energy that is given by; E = hf; where h is the plank's constant and f is the frequency.
keywords: Wave, electromagnetic wave, electromagnetic spectrum
<h2>Learn more about: </h2>
Level: High school
Subject: Physics
Topic: Electromagnetic spectrum
Sub-topic: Properties of an electromagnetic waves
Some of the challenges are the unpredictable fish and the risk of scratching againest coral or drowning for not focusing on your oxygen tank.
Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
The energy transfer in terms of work has the equation:
W = mΔ(PV)
To be consistent with units, let's convert them first as follows:
P₁ = 80 lbf/in² * (1 ft/12 in)² = 5/9 lbf/ft²
P₂ = 20 lbf/in² * (1 ft/12 in)² = 5/36 lbf/ft²
V₁ = 4 ft³/lbm
V₂ = 11 ft³/lbm
W = m(P₂V₂ - P₁V₁)
W = (14.5 lbm)[(5/36 lbf/ft²)(4 ft³/lbm) - (5/9 lbf/ft²)(11 lbm/ft³)]
W = -80.556 ft·lbf
In 1 Btu, there is 779 ft·lbf. Thus, work in Btu is:
W = -80.556 ft·lbf(1 Btu/779 ft·lbf)
<em>W = -0.1034 BTU</em>
As thermal energy increases, there is more particle movement. As thermal energy increases, there is more particle movement. As thermal energy increases, there is less particle movement.
Sure hope this helps you