Answer:
1.428 moles
Explanation:
If 0.0714 moles of N2 gas occupies 1.25 L space,
how many moles of N2 have a volume of 25.0 L?
Assume temperature and pressure stayed constant.
we experience it 0.0714 moles: 1.25L space
x moles : 25L of space
to get the x moles, cross multiply
(0.0714 x 25)/1.25
1.785/1.25 = 1.428 moles
Always use this method !!! always
Answer:
V = 42.6 L
Explanation:
Given data:
Number of moles of Cl₂ = 1.9 mol
Temperature and pressure = standard
Volume occupy = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × V = 1.9 mol ×0.0821 atm.L /mol.K × 273.15 k
V = 42.6 atm.L / 1 atm
V = 42.6 L
1 is B (Just remember to have the same number of atoms on both sides)
2 is B (A precipitate is a solid forming from 2 liquids)
Answer:
0.80 seconds (2 significant figures)
Explanation:
The equation of the reaction is given as;
CICH2CH2Cl (g) --> CH2CHCI (g) + HCl(g)
Rate constant (k) = 2.01 s^-1
From the units of the rate constant, this is a first order reaction.
Initial Concentration = 1.34 M
t = ?
Final concentration = 20% of 1.34 = 0.268 M
The integrated rate law for a first order reaction is given as;
ln[A] = ln[A]o - kt
ln(0.268) = ln(1.34) - 2.01(t)
-2.01(t) = - 1.6094
t = 0.8007 ≈ 0.80 seconds (2 significant figures)