Answer with Explanation:
Small and large carbohydrates have<em> diverse structural properties</em>. Such property allow them to have <u>different solubility.</u>
Solubility is a chemical property of a substance that allows it to dissolve in a given solvent.
Carbohydrates are made up of "monosaccharides." These are simple sugars and are considered small carbohydrates. On the contrary, "polysaccharide" is an example of a large carbohydrate.<em><u> Monosaccharides are soluble in water</u></em><em> </em>while<em><u> many polysaccharides are not soluble in water.</u></em>
The high solubility of monosaccharides is mainly due to the presence of hydroxide (OH) groups. These groups are always ready to bond with water (H₂O). Many polysaccharides are not soluble in water because of <em>intermolecular interactions</em> that prevents it from binding with water. Its dissolution process is different when compared to the smaller molecules.
So, this explains the answer.
Answer:
Noble gas, any of the seven chemical elements that make up Group 18 (VIIIa) of the periodic table. The elements are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesson (Og).
Explanation:
Noble gas, any of the seven chemical elements that make up Group 18 (VIIIa) of the periodic table. The elements are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesson (Og).
Answer:
Yes, you can detect the difference visually.
Answer:
A
Explanation:
Cs has a higher rate of reaction because it's easier to remove an electron from it, thereby leading to faster reactivity
Since the forward reaction is endothermic (heat is consumed in the reaction) that means that the enthalpy change for the forward reaction is a positive value.
Therefore, i would say that the reverse or backward reaction is exothermic (heat is released in the reaction to the sorroundings) and that the enthalpy change is a negative value.