Answer:
with teamwork
Explanation:
you need to use team work so the right answer is C
Answer:
20.0 cm
Explanation:
Here is the complete question
The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Solution
Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.
Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.
Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m
Now, P' = 1/u + 1/v
1/u = P'- 1/v
1/u = 55.0 D - 1/0.02 m
1/u = 55.0 m⁻¹ - 1/0.02 m
1/u = 55.0 m⁻¹ - 50.0 m⁻¹
1/u = 5.0 m⁻¹
u = 1/5.0 m⁻¹
u = 0.2 m
u = 20 cm
So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.
Newton’s law of gravity is considered “universal” because it is believed to be applicable to the entire Universe (to a good approximation). Gravity does not just pull an apple from a tree, but also pulls the Moon to the Earth, the Earth to the Sun, and so on. Gravity is a fundamental force of nature.
Answer:
27.0 milliliters is the nearest mililiter so 27.0 is the answer
Explanation:
Answer:
A boxed 14.0 kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9 ∘ above the horizontal. The monitor's speed is a constant 2.30 cm/s.
how much work is done on the monitor by (a) friction, (b) gravity
work(friction) = 453.5J
work(gravity) = -453.5J
Explanation:
Given that,
mass = 14kg
displacement length = 5.50m
displacement angle = 36.9°
velocity = 2.30cm/s
F = ma
work(friction) = mgsinθ .displacement
= (14) (9.81) (5.5sin36.9°)
= 453.5J
work(gravity)
= the influence of gravity oppose the motion of the box and can be pushing down, on the box from and angle of (36.9° + 90°)
= 126.9°
work(gravity) = (14) (9.81) (5.5cos126.9°)
= -453.5J