1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
2 years ago
12

A parallel-plate vacuum capacitor is connected to a battery and charged until the stored electric energy is . The battery is rem

oved, and then a dielectric material with dielectric constant is inserted into the capacitor, filling the space between the plates. Finally, the capacitor is fully discharged through a resistor (a resistor is connected across the capacitor terminals).
A) Find , the energy dissipated in the resistor.
Express your answer in terms of and other given quantities.
B)Consider the same situation as in the previous part, except that the charging battery remains connected while the dielectric is inserted. (Part B figure) The battery is then disconnected and the capacitor discharged. For this situation, what is , the energy dissipated in the resistor?
Express your answer in terms of and other given quantities.
Physics
1 answer:
Viktor [21]2 years ago
4 0

Answer:

A

The energy dissipated in the resistor {U_k} = \frac{U}{k}

B

The energy dissipated in the resistor{U_k} = kU

Explanation:

In order to gain a good understanding of the solution above it is necessary to understand that the concept required to solve the question is energy stored in the parallel plate capacitor.

Initially, take the first case. In that, according to the formula for energy stored in parallel plate capacitor with the dielectric inserted between the two plates, find the energy stored. Then, find the energy stored in the parallel plate capacitor when no dielectric is present. Then, write the equation of energy stored in the capacitor with the dielectric present in the form of the energy stored in the capacitor without the dielectric present. The equation must not be in the form of voltage as battery is removed in this case.

For part B, use the equation of the energy dissipated in the resistor. Write it in the form of the equation for energy stored in the parallel plate capacitor without dielectric in it. The equation must be in the form of voltage as battery is kept connected. Looking at the fundamentals

The energy stored in the parallel plate capacitor with the dielectric is given by,

                 U _k = \frac{1}{2} \frac{q ^2}{kC}

Here, the energy stored in the capacitor will be equal to the energy dissipated in the resistor. In this equation, Uk is the energy dissipated in the resistor, q is charge, k is the dielectric constant, and C is the capacitance.

Now, the equation of the energy stored in the parallel plate capacitor without dielectric is,

​ U= \frac{1}{2} \frac{q ^2}{C}

In this equation, U is the energy stored in the parallel plate capacitor without dielectric, q is charge, and C is the capacitance.

For part B, the battery is still connected. Thus, the equation q = CV is used to modify the above equation.

Thus, the energy stored in the parallel plate capacitor with the dielectric is given by,

U_ k = \frac{1}{2} \frac{k ^{2} C^ 2 V ^2}{kC} \\\\= \frac{1}{2}  kCV ^2

In this equation, Uk is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

The equation of the energy stored in the parallel plate capacitor without dielectric is,

U= \frac{1}{2} \frac{C^ 2 V ^2}{C} \\\\= \frac{1}{2} CV ^2

In this equation, U is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

(A)

The equation for energy dissipated in the resistor is,

 U _k = \frac{1}{2} \frac{q ^2}{kC}

Substitute U = \frac{1}{2}\frac{{{q^2}}}{C}  in the equation of {U_k}

U _k = \frac{1}{2} (\frac{1}{k} )\frac{q ^2}{C} \\\\= (\frac{1}{k} ) \frac{q^2}{C}\\\\ U_{k} = \frac{U}{k}

Note :

If the resistance relates to the capacitor, the energy stored in the capacitor is dissipated through the resistance. Thus, by substituting the equation of U, the expression is found out.

(B)

The equation for energy dissipated in the resistor is

U_{k} = \frac{1}{2}kCV^2

Here, V is voltage in the circuit.

Substitute U =\frac{1}{2} CV^2 in the equation of {U_k}

So,

        U_{k} = \frac{1}{2} kCV^2\\

       = k(\frac{1}{2} CV^2)

       U_{k} = kU

You might be interested in
1) Andrea and Chuck are riding on a merry-go-round. Andrea rides on a horse at the outer rim of the circular platform, twice as
telo118 [61]

Explanation:

The tangential speed of Andrea is given by :

v=r\omega

Where

r is radius of the circular path

ω is angular speed

The merry-go-round is rotating at a constant angular speed. Let the new distance from the center of the circular platform is r'

r' = 2r

New angular speed,

v'=r'\omega'\\\\v'=(2r)\omega\\\\v'=2r\omega\\\\v'=2v

New angular speed is twice that of the Chuck's speed.

8 0
3 years ago
A cubical wooden box floating on water rises 1cm when 400 gm of stone is
Ksivusya [100]

Answer:

Explanation:

I'm not  sure you can do this without just a bit more information. I can tell you what the mass of the water is when the rocks are removed. When we know that, we know the volume of the water that was displaced. whether or not this is enough information to determine the volume of the box, I'm not sure.

400 grams raises the box 1 cm.

The density of water = 1 gm / cm^3

400 grams of water = 400 mL or 400 cm^3

The volume of the displaced water = 400 cm^3

The volume a slice from the square prism is B*h

B = 400 cm^2

h = 1 cm

If the base is 400 cm^2 then each side is

s^2 = 400

sqrt(s^2)= sqrt(400)

s = 20

The volume of the box is 20^3 = 8000 cm^3

5 0
3 years ago
WHO WANTS BRAINLIEST THEN ANSWER THIS QUESTION
lozanna [386]

if the velocity of the car reduces from 70km/h to 50km/h then the speed of the car will be equal to the speed of the lorry...

thus the relative velocity will be 0

6 0
3 years ago
A 0.15-kg ball is thrown into the air and rises to a height of 20.0 m. How much kinetic energy did the ball initially have?
zzz [600]
IF the toss was straight upward, then the kinetic energy it got
from the toss is the gravitational potential energy it has at the top,
where it stops rising and starts falling.

Potential energy =  (mass)  x   (gravity) x (height)

                           = (0.15 kg) x (9.8 m/s²) x (20 m)

                           =      29.4 kg-m²/s²  =  29.4 joules .
7 0
2 years ago
Read 2 more answers
you decide to work part time at a local supermarket. The job pays eight dollars and 60 per hour and you work 20 hours per week.
aleksley [76]

Answer:

I guess that we want to find how much money you get each week.

We know that the job pays $8.60 per hour.

We know that you work 20 hours per week.

Then the gross pay (the total money that you earn) in a week is 20 times $8.60, or:

20*$8.60 = $172.

Now we know that your employer witholds:

10% + 7.65% + 5% = 22.65%

Then your employer withholds 22.65% of your gross pay.

if the 100% of your gross pay is $172

Then the 22.65% will be:

(22.65%/100%)*$172 = 0.2265*$172 = $38.96

This means that your employer withholds $38.96 of your weekly gross pay.

Then each week you get:

$172 - $38.96 = $133.04

4 0
2 years ago
Other questions:
  • 1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur
    10·1 answer
  • 1.When I cook an egg in a microwave oven, the device uses electromagnetic energy to increase the kinetic energy of particles of
    9·1 answer
  • Which of the following is a method used to prevent soil erosion?
    6·1 answer
  • If, in general, r were calculated as r =v/i, which circuit arrangement in part a of the experiment would have the smallest error
    6·1 answer
  • How do you make a tissue dance
    9·1 answer
  • Sharks are most common near coral reefs, because there are more fish there to eat.
    13·2 answers
  • Is this right I'm not sure
    11·2 answers
  • A ray in benzene has a critical angle of 41.8 deg when trying to enter air. What is the index of refraction for benzene?
    12·1 answer
  • Derive an equation of motion s=ut+1/2at2 for an object moving in straight line​
    14·1 answer
  • Two students side in carts opposite to one another in a spinning Ferris wheel as shown.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!