1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
12

A parallel-plate vacuum capacitor is connected to a battery and charged until the stored electric energy is . The battery is rem

oved, and then a dielectric material with dielectric constant is inserted into the capacitor, filling the space between the plates. Finally, the capacitor is fully discharged through a resistor (a resistor is connected across the capacitor terminals).
A) Find , the energy dissipated in the resistor.
Express your answer in terms of and other given quantities.
B)Consider the same situation as in the previous part, except that the charging battery remains connected while the dielectric is inserted. (Part B figure) The battery is then disconnected and the capacitor discharged. For this situation, what is , the energy dissipated in the resistor?
Express your answer in terms of and other given quantities.
Physics
1 answer:
Viktor [21]3 years ago
4 0

Answer:

A

The energy dissipated in the resistor {U_k} = \frac{U}{k}

B

The energy dissipated in the resistor{U_k} = kU

Explanation:

In order to gain a good understanding of the solution above it is necessary to understand that the concept required to solve the question is energy stored in the parallel plate capacitor.

Initially, take the first case. In that, according to the formula for energy stored in parallel plate capacitor with the dielectric inserted between the two plates, find the energy stored. Then, find the energy stored in the parallel plate capacitor when no dielectric is present. Then, write the equation of energy stored in the capacitor with the dielectric present in the form of the energy stored in the capacitor without the dielectric present. The equation must not be in the form of voltage as battery is removed in this case.

For part B, use the equation of the energy dissipated in the resistor. Write it in the form of the equation for energy stored in the parallel plate capacitor without dielectric in it. The equation must be in the form of voltage as battery is kept connected. Looking at the fundamentals

The energy stored in the parallel plate capacitor with the dielectric is given by,

                 U _k = \frac{1}{2} \frac{q ^2}{kC}

Here, the energy stored in the capacitor will be equal to the energy dissipated in the resistor. In this equation, Uk is the energy dissipated in the resistor, q is charge, k is the dielectric constant, and C is the capacitance.

Now, the equation of the energy stored in the parallel plate capacitor without dielectric is,

​ U= \frac{1}{2} \frac{q ^2}{C}

In this equation, U is the energy stored in the parallel plate capacitor without dielectric, q is charge, and C is the capacitance.

For part B, the battery is still connected. Thus, the equation q = CV is used to modify the above equation.

Thus, the energy stored in the parallel plate capacitor with the dielectric is given by,

U_ k = \frac{1}{2} \frac{k ^{2} C^ 2 V ^2}{kC} \\\\= \frac{1}{2}  kCV ^2

In this equation, Uk is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

The equation of the energy stored in the parallel plate capacitor without dielectric is,

U= \frac{1}{2} \frac{C^ 2 V ^2}{C} \\\\= \frac{1}{2} CV ^2

In this equation, U is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

(A)

The equation for energy dissipated in the resistor is,

 U _k = \frac{1}{2} \frac{q ^2}{kC}

Substitute U = \frac{1}{2}\frac{{{q^2}}}{C}  in the equation of {U_k}

U _k = \frac{1}{2} (\frac{1}{k} )\frac{q ^2}{C} \\\\= (\frac{1}{k} ) \frac{q^2}{C}\\\\ U_{k} = \frac{U}{k}

Note :

If the resistance relates to the capacitor, the energy stored in the capacitor is dissipated through the resistance. Thus, by substituting the equation of U, the expression is found out.

(B)

The equation for energy dissipated in the resistor is

U_{k} = \frac{1}{2}kCV^2

Here, V is voltage in the circuit.

Substitute U =\frac{1}{2} CV^2 in the equation of {U_k}

So,

        U_{k} = \frac{1}{2} kCV^2\\

       = k(\frac{1}{2} CV^2)

       U_{k} = kU

You might be interested in
A wave has a wavelength of 10 mm and a frequency of 14 hertz. What is its speed?
Katena32 [7]
0.14 meters per second .
3 0
4 years ago
If the mass of the sun is 1x, at least one planet will fall into the habitable zone if I place a planet in orbits___, ____, ____
nasty-shy [4]

If the mass of the sun is 1x, at least one planet will fall into the habitable zone. if I place a planet in orbits 2, 6, and 75, and all planets will orbit the sun successfully.

If the mass of the sun is 2x, at least one planet will fall into the habitable zone. if I place a planet in orbits 84, 1, and 5, and all planets will orbit the sun successfully.

If the mass of the sun is 3x, at least one planet will fall into the habitable zone if I place a planet in orbits 672, and 7 and all planets will orbit the sun successfully.

8 0
2 years ago
What is refraction?
Damm [24]
B- light bends as it passes through an object ( a would be reflect)
4 0
3 years ago
Which of the following is a factor that determines the composition of magma?
Lina20 [59]
The answer is C. I hope I helped!
5 0
3 years ago
How do the meetings of the words exercise and fitness differ?
ICE Princess25 [194]
Exercise is the activity and fitness is a lifestyle and done with time
7 0
3 years ago
Other questions:
  • how much heat must be added to 30.0 g of solid iron to melt it, assuming the iron is already at it's melting point?​
    14·1 answer
  • A bag is gently pushed off the top of a wall at A and swings in a vertical plane at the end of a rope of length l. Determine the
    12·1 answer
  • If i weigh 120 pounds, what is my mass
    10·1 answer
  • A block whose weight is 45 N rests on a horizontal table. A horizontal force of 36 N is applied to the block. The coefficient of
    8·1 answer
  • A rock is projected from the edge of the top of a building with an initial velocity of 12.2 m/s at an angle of 53° above the hor
    6·1 answer
  • Think about your displacement at three different times throughout your day and compare it with e distance you traveled. (6 point
    15·1 answer
  • A baseball has a mass of 0.45 kg and is thrown with a speed of 25 m/s. what is the momentum of the baseball?
    11·2 answers
  • In 1970, a rocket powered car called Blue Flame achieved a maximum speed of 1.00(10 km/h (278m/s).Suppose the magnitude of the c
    10·1 answer
  • If you are sitting on a school bus, is the driver in motion (according to your
    14·1 answer
  • What type of Psychologist was B.F. Skinner?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!