Answer:
0.027648 kgm²
Explanation:
M = Mass of disc = 1.2 kg
r = Radius of disc = 0.16 m
m = Mass of rod = 0.16 kg
R = Rod distance = 0.16 m
Moment of inertia of disk is given by

Moment of inertia of the three rods

The total moment of inertia is given by

The moment of inertia of the stool with respect to an axis that is perpendicular to the plane of the disk at its center is 0.027648 kgm²
The answer is Transistor. Its a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit.
Answer:
4 m/s
Explanation:
KE =
Velocity of balloon will be 4 m/s.
!! Hope It Helps !!
Answer:
The focal length of the lens should be -51.5 cm (a concave lens).
Explanation:
The purpose of the lens is to make objects at 48.5 cm appear at the healthy near point. The healthy near point is 25.0 cm.
We use the lens formula

where <em>f</em> = focal length, <em>u</em> = object distance and <em>v</em> = image distance.
In this case, <em>u</em> = 48.5 cm and <em>v</em> = -25.0 cm.
<em>v</em> is negative because the image is virtual an not real. (Here, we are using the real-is-positive sign convention)


The negative sign indicates the lens is concave.
Answer
given,
mass of the = m₁ = 8.75 Kg
another mass of the object = m₂ = 14 Kg
distance between them = 50 cm
R₁ = 17 cm
R₂ = 50 -17 = 33 cm
a) Force applied due to the Mass 8.75 in +ve x- direction



Force applied due to mass 14 Kg in -ve x-direction



net force
F = F₁ + F₂


Using newton second law



b) As the acceleration of mass comes out to be +ve hence, the direction will be toward the mass of 8.75 Kg