1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
2 years ago
6

A woman lifts a barbell 2.0 m in 5.0 s. If she lifts it the same distance in 10 s, the work done by her is:______

Physics
1 answer:
Zina [86]2 years ago
3 0

Answer:

d

Explanation:

none

You might be interested in
Object A has 27 J of kinetic energy. Object B has one-quarter the mass of object A.
andreev551 [17]

Answer:

the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

Explanation:

Given;

kinetic energy of object A, = 27 J

let the mass of object A = m_A

then, the mass of object B = m_B = \frac{m_A}{4}

work done on object A = -18 J

work done on object B = -18 J

let v_i be the initial speed

let v_f be the final speed

For object A;

K.E_A = 27\\\\\frac{1}{2} m_A v_i^2 = 27\\\\m_A v_i^2  = 54\\\\m_A = \frac{54}{v_i^2} ----Equation \ (1)\\\\Apply \ work-energy \ theorem;\\\\\delta K.E_A = -18\\\\\frac{1}{2} m_A v_f^2 - \frac{1}{2} m_A v_i^2 = -18\\\\\frac{1}{2} m_A ( v_f^2 \ -  v_i^2 )\ =- 18\\\\v_f^2 \ -  v_i^2  = -\frac{36}{m_A} ---Equation \ (2)\\\\v_f^2 \ -  v_i^2  = -\frac{36v_i^2}{54}\\\\ v_f^2 \ =v_i^2 - \frac{36v_i^2}{54}\\\\ v_f^2 = \frac{54v_i^2 -36v_i^2 }{54} \\\\v_f^2 = \frac{18v_i^2}{54} \\\\v_f^2 = \frac{v_i^2}{3} \\\\

v_f = \sqrt{\frac{v_i^2}{3} }\\\\v_f = \frac{1}{\sqrt{3} } \ v_i\\\\

Thus, the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

To obtain the change in the final speed of object B, apply the following equations.

K.E_B_i = \frac{1}{2} m_Bv_i^2\\\\m_B = \frac{m_A}{4} \\\\K.E_B_i = \frac{1}{2}(\frac{m_A}{4} )v_i^2\\\\K.E_B_i = \frac{m_Av_i^2}{8} \\\\But, \ m_Av_i^2 = 54 \\\\K.E_B_i = \frac{54}{8} \\\\Apply \ work-energy \ theorem ;\\\\\delta K.E = -18\\\\K.E_f -K.E_i = -18\\\\\frac{1}{2}m_Bv_f^2 - \frac{1}{2} m_Bv_i^2 = -18\\\\Recall \ m_B =  \frac{m_A}{4} \\\\\frac{1}{2}(\frac{m_A}{4} )v_f^2 - \frac{1}{2}(\frac{m_A}{4} )v_i^2 = -18\\\\\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\

\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\v_i^2 -v_f^2 = \frac{8}{m_A} \times 18\\\\v_i^2 -v_f^2 =\frac{144}{m_A} \\\\But , m_A = \frac{54}{v_i^2} \\\\v_i^2 -v_f^2 =\frac{144v_i^2}{54} \\\\v_f^2 = v_i^2 - \frac{144v_i^2}{54}\\\\v_f^2 = \frac{54v_i^2-144v_i^2}{54}\\\\ v_f^2 = \frac{-90v_i^2}{54} \\\\v_f^2 = \frac{-5v_i^2}{3} \\\\|v_f| = \sqrt{\frac{5v_i^2}{3}} \\\\|v_f| = \sqrt{\frac{5}{3}} \ v_i

Thus, the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

3 0
2 years ago
A ball is tossed with enough speed straight up so that it is in the air several seconds. (a) What is the velocity of the ball wh
irina1246 [14]

(a) Zero

When the ball reaches its highest point, the direction of motion of the ball reverses (from upward to downward). This means that the velocity is changing sign: this also means that at that moment, the velocity must be zero.

This can be also understood in terms of conservation of energy: when the ball is tossed up, initially it has kinetic energy

K=\frac{1}{2}mv^2

where m is the ball's mass and v is the initial speed. As it goes up, this kinetic energy is converted into potential energy, and when the ball reaches the highest point, all the kinetic energy has been converted into potential energy:

U=mgh

where g is the gravitational acceleration and h is the height of the ball at highest point. At that point, therefore, the potential energy is maximum, while the kinetic energy is zero, and so the velocity is also zero.

(b) 9.8 m/s upward

We can find the velocity of the ball 1 s before reaching its highest point by using the equation:

a=\frac{v-u}{t}

where

a = g = -9.8 m/s^2 is the acceleration due to gravity, which is negative since it points downward

v = 0 is the final velocity (at the highest point)

u is the initial velocity

t = 1 s is the time interval

Solving for u, we find

u=v-at = 0 -(-9.8 m/s^2)(1 s)= +9.8 m/s

and the positive sign means it points upward.

(c) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where

v = 0 is the final velocity (at the highest point)

u = 9.8 m/s is the initial velocity

Substituting, we find

\Delta v = 0 - (+9.8 m/s)=-9.8 m/s

(d) 9.8 m/s downward

We can find the velocity of the ball 1 s after reaching its highest point by using again the equation:

a=\frac{v-u}{t}

where this time we have

a = g = -9.8 m/s^2 is the acceleration due to gravity, still negative

v  is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

t = 1 s is the time interval

Solving for v, we find

v = u+at = 0 +(-9.8 m/s^2)(1 s)= -9.8 m/s

and the negative sign means it points downward.

(e) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where here we have

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

Substituting, we find

\Delta v = -9.8 m/s - 0=-9.8 m/s

(f) -19.6 m/s

The change in velocity during the overall 2-s interval is given by

\Delta v = v -u

where in this case we have:

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = +9.8 m/s is the initial velocity (1 s before reaching the highest point)

Substituting, we find

\Delta v = -9.8 m/s - (+9.8 m/s)=-19.6 m/s

(g) -9.8 m/s^2

There is always one force acting on the ball during the motion: the force of gravity, which is given by

F=mg

where

m is the mass of the ball

g = -9.8 m/s^2 is the acceleration due to gravity

According to Newton's second law, the resultant of the forces acting on the body is equal to the product of mass and acceleration (a), so

mg = ma

which means that the acceleration is

a= g = -9.8 m/s^2

and the negative sign means it points downward.

7 0
3 years ago
a ball is projected horizontally with a velocity of 5 m per second from the top of a building 19.6 m high how long will the ball
zepelin [54]

Answer:

1.98s

Explanation:

The time taken to hit the ground is given by

h=ut+ 1/2 at^2

but u =0

so we have

h=1/2at^2

making t the subject

t=√2h/g

√2×19.6/10

1.98s

8 0
2 years ago
A horizontal uniform bar of mass 2.7 kg and length 3.0 m is hung horizontally on two vertical strings. String 1 is attached to t
Jlenok [28]

Answer:

14.36 N

Explanation:

T_{1} = Tension in string 1

T_{2} = Tension in string 2

m_b = mass of the bar = 2.7 kg

W_b = weight of the bar

weight of the bar is given as

W_b = m_{b} g = (2.7) (9.8) = 26.46N

m_m = mass of the bar = 1.35 kg

W_m = weight of the monkey

weight of the monkey is given as

W_m = m_{m} g = (1.35) (9.8) = 13.23N

Using equilibrium of torque about left end

W_{m} (AB) + W_{b} (AB) = T_{2} (AC)\\W_{m} (AB) + W_{b} (AB) = T_{2} (AD - CD)\\(13.23) (1.5) + (26.46)(1.5) = T_{2} (3 - 0.65)\\\\T_{2} = 25.33 N

Using equilibrium of force in vertical direction

T_{1} + T_{2} = W_{b} + W_{m}\\T_{1} + 25.33 = 26.46 + 13.23\\T_{1} = 14.36 N

7 0
3 years ago
A charged particle moves through a magnetic field. In which situation is the magnetic force zero?
maksim [4K]

Answer:

The answer is the option a.

Explanation:

We know that magnetic force (Fm) is defined as

Fm = q (v x B)

Where q is a the value of the charge, v is the velocity of the charge and B is the value of the magnetic field.

"v x B" is defined as the cross product between the vectors velocity and magnetic field, and if the angle between them is thetha < 180°, then, the cross product is

v x B = vBsin (thetha)

So,

Fm = qvBsin (thetha)

And, in case in which v and B are parallel vectors, thetha is zero, and,

sin (thetha)=sin (0) = 0

So, Fm=0

7 0
2 years ago
Other questions:
  • Lava that cools so quickly that ions do not have time to arrange themselves into crystals will form igneous rocks with a _____ t
    15·1 answer
  • I want to ask about science
    14·2 answers
  • A ball at the end of a string of 2.2m length rotates at
    9·2 answers
  • Jesse watches the Moon rise around 6:00 PM. When will the Moon most likely set?
    14·2 answers
  • Can you hear this Picture???<br>If you know it, you get it
    6·1 answer
  • At 12 seconds what is the direction of the velocity of the rocket what is the direction of the acceleration rocket
    15·1 answer
  • What is the acceleration of an athlete who speeds up from 2 m/s to 9 m/s in 5 seconds
    9·1 answer
  • Do any of the atom diagrams below represent atoms of the same element?
    8·1 answer
  • Pls will give brainliest!! How is an atom categorized when it gains an extra electron, and how is it categorized when it loses a
    10·1 answer
  • a steel ball bearing is released from a height hhh and rebounds after hitting a steel plate to a height hhh. what is true about
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!