v = initial velocity of launch of the stone = 12 m/s
θ = angle of the velocity from the horizontal = 30
Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.
v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s
a = acceleration of the stone = - 9.8 m/s²
t = time of travel = 4.8 s
Y = vertical displacement of stone = vertical height of the cliff = ?
using the kinematics equation
Y = v₀ t + (0.5) a t²
inserting the values
Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²
Y = - 84.1 m
hence the height of the cliff comes out to be 84.1 m
Answer:
it must be possible to prove it wrong
Explanation:
The time taken is 1040 s.
<h3>What is speed?</h3>
The term speed refers to the rate at which the distance changes per unit time. This is why we define speed as the ratio of the distance to time for a body that is moving along a straight line.
Now;
We must first convert the distance to meters;
distance = 5.2km or 5200m
Speed = distance/time
time = distance/speed
time = 5200m/5 m/s
time = 1040 s
Learn more about speed:brainly.com/question/28224010
#SPJ1
Explanation:
It is given that,
Velocity of the particle moving in straight line is :

We need to find the distance (x) traveled by the particle during the first t seconds. It is given by :


Using by parts integration, we get the value of x as :

Hence, this is the required solution.
a) KE=0.5*mv^2==0.5*145*25^2=45312.5 J
b) PE=mgh=145*9.8*3.5=4973.5 J
c) ME=KE+PE=m(0.5v^2+gh)=62524 J