Answer:D
Explanation:
It was right o khan academy
Answer:
102000 kg
Explanation:
Given:
A total Δν = 15 km/s
first stage mass = 1000 tonnes
specific impulse of liquid rocket = 300 s
Mass flow rate of liquid fuel = 1500 kg/s
specific impulse of solid fuel = 250 s
Mass flow of solid fuel = 200 kg/s
First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds
Now,
Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg
Also,
Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg
Therefore,
The total jettisoned mass flow of the fuel in first stage
= 90000 kg + 12000 kg
= 102000 kg
Answer:

Explanation:
As we know that if the object is placed on the inclined plane then the force of friction on the object is counterbalanced by the component of the weight of the object along the inclined plane.
So we can say

now if we increase the inclination of the plane then the component of the weight weight along the inclined plane will increase and hence the friction force will also increase.
As we know that the limiting value or the maximum value of friction force at the static condition is given by


so we have

so we will have

so now we have

so maximum possible angle of the inclined plane is

Answer:
Twice.
Explanation:
The momentum of an object is given by :
p = mv
Where
m is mass and v is the velocity
If the mass of the ball were doubled, m'=2m and v'=v=3 m/s
New momentum,
p'=m'v'
p'=2m × v
p'=2mv
or
p'=2p
So, the new momentum becomes twice the initial momentum.
Answer:
14 billion years
Explanation:
The Hubble – Lemaître law, previously called the Hubble law, is a law of physics that states that the redshift of a galaxy is proportional to the distance it is, which is the same as, the further one galaxy is found from another, more quickly it seems to move away from it.
The Hubble constant is the value that measures the rate at which the expansion speed of the Universe varies with distance, and is one of the fundamental parameters of the Universe and allows, in particular, to determine the age of the Universe as we will see.