Answer:
5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
Explanation:
The concept to solve this problem is given by Energy Transferred, the equation is given by,

Where,
Q= Energy transferred
m = mass of water
c = specific heat capacity
Temperature change (K or °C)
Replacing the values where mass is 50g and temperature is 80°C to 0°C we have,



Then we can calculate the heat absorbed by m grams of ice at 0°C, then

How Q_1=Q_2, so



Then 5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
Answer:
12500(kg*m/s)
Explanation:
F=ma=mv/t=p/t
p=F*t=500N*25 s=12500(kg*m/s)
Answer:
Given that
V2/V1= 0.25
And we know that in adiabatic process
TV^န-1= constant
So
T1/T2=( V1 /V2)^ န-1
So = ( 1/0.25)^ 0.66= 2.5
Also PV^န= constant
So P1/P2= (V2/V1)^န
= (1/0.25)^1.66 = 9.98
A. RMS speed is
Vrms= √ 3RT/M
But this is also
Vrms 2/Vrms1= (√T2/T1)
Vrms2=√2.5= 1.6vrms1
B.
Lambda=V/4π√2πr²N
So
Lambda 2/lambda 1= V2/V1 = 0.25
So the mean free path can be inferred to be 0.25 times the first mean free path
C. Using
Eth= 3/2KT
So Eth2/Eth1= T2/T1
So
Eth2= 2.5Eth1
D.
Using CV= 3/2R
Cvf= Cvi
So molar specific heat constant does not change
Answer:
F = 2(50 N) - (50 N) = 50 N
Explanation:
The direction of F is the direction in which the two students are pushing.