Answer:
a
past the goal post
Yes the Flyers won the match
Explanation:
Generally the distance covered by the pluck during the last 1.25 seconds is mathematically represented as

=> 
=> 
Generally the position of the puck when the game clock reaches zero is mathematically represented as

past the goal post
Given that the Bruins where one point down and Flyers scored another goal it means that the flyer are now two point up hence they won the match
Answer:
50 m/s opposite direction to the motion of the truck
Explanation:
From the question,
Applying the law of conservation of momentum
mu+m'u' = V(m+m')...….. Equation 1
Where m = mass of the truck, u = initial velocity of the truck, m' = mass of the car, u' = initial velocity of the car, V = Final velocity after collision
Given: m = 2500 kg, u = 20 m/s, m' = 1000 kg, V = 0 m/s (both car stop after collision)
Substitute these values into equation 1
2500(20)+1000(u') = 0(2500+1000)
2500(20)+1000(u') = 0
Solve for u'
u' = -[2500(20)]/1000
u' = -50 m/s
The negative sign shows that the car travels in opposite direction to the truck
Hence the car initial velocity before collision is 50 m/s in opposite direction to the motion of the truck
When you refer to how close a measured value is to a standard, accepted or known value, you are talking about the ACCURACY of the data. This is the definition of accuracy when it comes to engineering and other fields of science.
Accuracy is usually associated or with the term precision, as their definitions are often interchanged.
1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

If something is going down a hill it can help slow it down
it can stop you from flying off a rollercoaster