The initial speed of the shot is 15.02 m/s.
The Shot put is released at a height y<em> </em>from the ground with a speed u. It is released at an angle θ to the horizontal. In a time t, the shot put travels a distance <em>R</em> horizontally.
Pl refer to the attached diagram.
Resolve the velocity u into horizontal and vertical components, u ₓ=ucosθ and uy=u sinθ. The horizontal component remains constant in the absence of air resistance, while the vertical component varies due to the action of the gravitational force.
Write an expression for R.

Therefore,

In the time t, the net displacement of the shotput is y in the downward direction.
Use the equation of motion,

Substitute the value of t from equation (1).

Substitute -2.10 m for y, 24.77 m for R and 38.0° for θ and solve for u.

The shot put was thrown with a speed 15.02 m/s.
Since an alpha particle has 2 protons and no negative particles (electrons) to balance the net charge, its charge is
Q=2(1.6e-19)=3.2e-19C.
The force on a charged particle is F=QE so
(3.2e-19C)(600N/C)=1.92e-16N
Answer:Mass of the body = 20 kg.
Final Velocity = 5.8 m/s.
Initial velocity = 0
Time = 3 seconds.
Using the Formula,
Acceleration = (v - u)/ t
= (5.8 - 0)/ 3
= 1.6 m /s².
Now, Using the Formula,
Force = mass × acceleration
= 20 × 1.6
=
Explanation: I REALLY HOPE THIS HELPS I'M KINDA NEW AT THIS :] :]
<em>It's a test on Geography!
</em>
Answer: The ratio of atoms of potassium to ratio of atoms of oxygen is 4:2
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed, and remains conserved. The mass of products must be same as that of the reactants.
Thus the number of atoms of each element must be same on both sides of the equation so as to keep the mass same and thus balanced chemical equations are written.
K exists as atoms and oxygen exist as molecule which consists of 2 atoms. The ratio of number of atoms on both sides of the reaction are same and thus the ratio of atoms of potassium to ratio of atoms of oxygen is 4:2.