Uranium-238 decays<span> by alpha emission </span>into<span> thorium-234, which itself </span>decays<span> by beta emission to protactinium-234, which </span>decays<span> by beta emission to </span>uranium<span>-234, and so on. The various </span>decay<span> products, (sometimes referred to as “progeny” or “daughters”) form a series starting at </span>uranium-238<span>.</span>
Answer: q2 = -0.05286
Explanation:
Given that
Charge q1 = - 0.00325C
Electric force F = 48900N
The electric field strength experienced by the charge will be force per unit charge. That is
E = F/q
Substitute F and q into the formula
E = 48900/0.00325
E = 15046153.85 N/C
The value of the repelled second charge will be achieved by using the formula
E = kq/d^2
Where the value of constant
k = 8.99×10^9Nm^2/C^2
d = 5.62m
Substitutes E, d and k into the formula
15046153.85 = 8.99×10^9q/5.62^2
15046153.85 = 284634186.5q
Make q the subject of formula
q2 = 15046153.85/ 28463416.5
q2 = 0.05286
Since they repelled each other, q2 will be negative. Therefore,
q2 = -0.05286
Explanation:
Formula which holds true for a leans with radii
and
and index refraction n is given as follows.
Since, the lens is immersed in liquid with index of refraction
. Therefore, focal length obeys the following.
and,
or,
= 32.4 cm
Using thin lens equation, we will find the focal length as follows.

Hence, image distance can be calculated as follows.


= 47.9 cm
Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.
1 mole = 18 g
200 g = glass of water
200 ÷ 18 = 11.1
11.1 moles of water in 200 g (glass of water)