Your answer is C)
a)t=2.78 sec
b)R=835.03 m
c)
Explanation:
Given that
h= 38 m
u=300 m/s
here given that
The finally y=0
So
t=2.78 sec
The horizontal distance,R
R= u x t
R=300 x 2.78
R=835.03 m
The vertical component of velocity before the strike
Answer:
4 is the best option for it as there are some stuff in grade to ye
Answer:
Explanation:
From the question we are told that
The moment of inertia is 
The final angular speed is 
The time taken is 
The initial angular speed is 
Generally the average angular acceleration is mathematically represented as

=> 
=> 
Generally the torque is mathematically represented as

=> 
=> 
Answer: First, we determine the circumference of the Mars by the equation below.
C = 2πr
Substituting the known values,
C = 2(π)(3,397 km) = 6794π km
To determine the tangential speed, we divide the circumference calculated above by the time it takes for Mars to complete one rotation and that is,
tangential speed = 6794π km / 24.6 hours = 867.64 km/h