It will lose them and become stable
"windweathered" because the use of wind weathering would bring the sand all around and it would be wind weathered
Answer:
The
solution has a higher osmotic pressure and higher boiling point than LiCl solution.
Explanation:
As concentrations of two aqueous solutions are same therefore we can write:
,
and 
where
,
and
are lowering of vapor pressure, elevation in boiling point and osmotic pressure of solution respectively.
is van't hoff factor.
= total number of ions generated from dissolution of one molecule of a substance (for strong electrolyte).
Here both
and LiCl are strong electrolytes.
So,
and 
Hence, lowering of vapor pressure, elevation in boiling point and osmotic pressure will be higher for
solution.
Therefore the
solution has a higher osmotic pressure and higher boiling point than LiCl solution.
Answer:
0.2193 μm
Explanation:
The reaction showing the Photodissociation of ozone (O3) is given below as:
O₃ + hv --------------------------> O₂ + O⁺
H° (142.9) (0) (438kJ/mol).
The first thing to do here is to determine the change in the enthalpy of the total reaction, this can be done by subtracting the change in the enthalpy of the reactant from the change in enthalpy in the product. Hence, we have:
ΔH° = [438 kJ/mol + 247.5 kJ/mol] - (142.9) = 542.6 KJ/mol.
This value, that is 542.6 KJ/mol will then be used in the determination of the value for the maximum wavelength that could cause this photodissociation.
Therefore, the maximum wavelength could cause this photodissociation ≤ h × c/ E = [ 1.199 × 10⁻⁴]/ 542.6 = 2.193 × 10⁻⁷ = 0.2193 μm