Answer:
32.92 moles of Mg
Explanation:
To convert grams to moles (Or vice versa) of any chemical compound we need to use the molar mass of the substance (That is, how many grams weighs 1 mole of the chemical).
The magnesium, Mg, has a molar mass of 24.305g/mol. That means in 800.0g of Mg you have:
800.0g * (1mol / 24.305g) =
<h3>32.92 moles of Mg</h3>
<h3>
Answer:</h3>
0.012 dekameters (dkm)
<h3>
Explanation:</h3>
<u>We are given;</u>
Required to identify the measurements that is not equivalent to 120 cm.
- Centimeters are units that are used to measure length together with other units such as kilometers(km), meters (m), millimeters (mm), dekameters (dkm), etc.
- These units can be inter-converted to one another using suitable conversion factors.
- To do this, we are going to have a table showing the suitable conversion factor from one unit to another.
Kilometer (km)
10
Decimeter (Dm)
10
Hectometer (Hm)\
10
Meter (m)
10
Dekameter (dkm)
10
Centimeter (cm)
10
Millimeter (mm)
Therefore;
To convert cm to km
Conversion factor is 10^5 cm/km
Thus;
120 cm = 120 cm ÷ 10^5 cm/km
= 0.0012 km
To convert cm to dkm
Conversion factor is 10 cm/dkm
Therefore,
120 cm = 120 cm ÷ 10 cm/dkm
= 12 dkm
To convert cm to m
The suitable conversion factor is 10^2 cm/m
Thus,
120 cm = 120 cm ÷ 10^2 cm/m
= 1.2 m
To convert cm to mm
Suitable conversion factor is 10 mm/cm
Therefore;
120 cm = 120 cm × 10 mm/cm
= 1200 mm
Therefore, the measurement that is not equal to 120 cm is 0.012 dkm
Answer:
1.2*10^24 molecules of CF4
Explanation:
the molar mass of cf4 is 88.0043 g/mol
176/88.0043 = 2 moles of CF4
Then multiply by avogadro's number (6.022*10^23) to get the number of molecules
2*6.022*10^23 = 1.2*10^24 molecules of CF4
Answer:
B. Salt, NaCl, is produced by the process of evaporation of seawater or brine. If the surface area of the water is increased, the same volume of water evaporates faster.
C. The Haber process combines hydrogen and nitrogen to make ammonia. The two gases are passed through a reactor under pressure and at high temperatures. If iron is added to the reactor, the yield of ammonia increases.
Explanation:
Evaporation of water is responsible for the production of sodium chloride also known as table salt. Sodium and chlorine are present in water. When more evaporation of water occurs, sodium and chlorine come close together forming sodium chloride. Haber process is responsible for the production of ammonia which is used as fertilizer. For speed up the process, catalyst is used such as iron in order to complete the reaction in less time. Iron binds hydrogen and nitrogen with each other.