Answer:
A single carbon pool can often have several fluxes both adding and removing carbon simultaneously. For example, the atmosphere has inflows from decomposition (CO2 released by the breakdown of organic matter), forest fires and fossil fuel combustion and outflows from plant growth and uptake by the oceans.
Explanation:
32L —> 32000g —> 727.116 Moles (rounded)
At STP, the volume of a gas represents the number of particles.That said, from the chemical reaction one mole of oxygen reacts with two moles of co to produce the product, CO2At STP, 3 moles of Oxygen will produce 6 moles of CO2. Hence It follows that at standard temperature and pressure, 6.0 L of CO2 will be produced. Option D.
Answer : The
for this reaction is, -88780 J/mole.
Solution :
The balanced cell reaction will be,

Here, magnesium (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half oxidation-reduction reaction will be :
Oxidation : 
Reduction : 
Now we have to calculate the Gibbs free energy.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons to balance the reaction = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = 0.46 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the
for this reaction is, -88780 J/mole.