Answer:
A) 7.9 x 10⁶ inches
B) 1004 g
C) 2.8 x 10³ inches/ min
D) 1.2 x 10⁻⁴ mm
Explanation:
A) Since 39.37 inches = 1 m, you can convert meters to inches by multiplying by the conversion factor (39.37 inches / 1 m).
Notice that if 39.37 inches = 1 m then 39.37 inches / 1 m = 1. That means that when you multiply by a conversion factor, you are only changing units since it is the same as multiplying by 1 :
2.0 x 10⁵ m * (39.37 inches / 1 m) = 7.9 x 10⁶ inches
B) Conversion factors : (2.205 pounds / 1 kg) and (453.59 g / 1 pound), because 2.205 pounds = 1 kg and 1 pound = 453.59 g. Then:
1.004 kg * ( 2.205 pounds / 1 kg) * ( 453.59 g / 1 pound) = 1004 g
C) Conversion factor: (39.37 inches / 1 m) and (60 s / 1 min)
1.2 m/s * (39.37 inches / 1 m) * ( 60 s / 1 min) = 2.8 x 10³ inches/ min
D)Converison factor ( 1 mm / 1 x 10⁶ nm):
120 nm (1 mm / 1 x 10⁶ nm) = 1.2 x 10⁻⁴ mm
To plot the calibration curve, you need to prepare iron solutions with known concentrations and measure their absorbance. You need to pipet 0 mL of the diluted solution to have 0.00 mg of iron.
In spectrophotometry, to plot the calibration curve, you need to prepare solutions with known concentrations and measure their absorbance.
We have a standard iron solution with a concentration of 0.2500g/L of pure iron (C₁). We pipet 25.00mL (V₁) of this standard iron solution into a 500mL (V₂) volumetric flask and dilute up to the mark with distilled water.
We can calculate the concentration of the diluted solution (C₂) using the dilution rule.

Then, if we wanted to prepare the blank, that is, the solution that contains the same matrix but not the analyte, and whose concentration in iron is 0.00 mg/L, we wouldn't pipet any of the diluted solution.
To plot the calibration curve, you need to prepare iron solutions with known concentrations and measure their absorbance. You need to pipet 0 mL of the diluted solution to have 0.00 mg of iron.
Learn more: brainly.com/question/24195565
The products of chemical reactions often have completely different properties than the reactants, like viscosity, boiling and melting temperatures, etc.
That is because the atoms form new and different bonds to give the products.
Answer : Hg (Mercury)
Explanation : In the given series of elements Na falls after the Cu in the reactivity series, for Pb it also falls after Cu, and for Mg it is the same.
Only Hg which is mercury can spontaneously donate its electrons to copper in the solution because it falls before Cu in the reactivity/activity series.