![\bf \textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}\quad \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ A=8\\ r=4 \end{cases}\implies 8=\cfrac{\theta \pi 4^2}{360}\implies \cfrac{8\cdot 360}{4^2\pi }=\theta \\\\\\ \cfrac{2880}{16\pi }=\theta \implies \boxed{\cfrac{180}{\pi }=\theta }\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20sector%20of%20a%20circle%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%5E2%7D%7B360%7D%5Cquad%20%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0AA%3D8%5C%5C%0Ar%3D4%0A%5Cend%7Bcases%7D%5Cimplies%208%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%204%5E2%7D%7B360%7D%5Cimplies%20%5Ccfrac%7B8%5Ccdot%20360%7D%7B4%5E2%5Cpi%20%7D%3D%5Ctheta%20%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2880%7D%7B16%5Cpi%20%7D%3D%5Ctheta%20%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B180%7D%7B%5Cpi%20%7D%3D%5Ctheta%20%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)
![\bf \textit{arc's length}\\\\ s=\cfrac{\theta \pi r}{180}\quad \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ \theta =\frac{180}{\pi }\\ r=4 \end{cases}\implies s=\cfrac{\frac{180}{\underline{\pi} }\underline{\pi} \cdot 4}{180}\implies s=\cfrac{\underline{180}\cdot 4}{\underline{180}} \\\\\\ \boxed{s=4}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barc%27s%20length%7D%5C%5C%5C%5C%0As%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%7D%7B180%7D%5Cquad%20%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0A%5Ctheta%20%3D%5Cfrac%7B180%7D%7B%5Cpi%20%7D%5C%5C%0Ar%3D4%0A%5Cend%7Bcases%7D%5Cimplies%20s%3D%5Ccfrac%7B%5Cfrac%7B180%7D%7B%5Cunderline%7B%5Cpi%7D%20%7D%5Cunderline%7B%5Cpi%7D%20%5Ccdot%204%7D%7B180%7D%5Cimplies%20s%3D%5Ccfrac%7B%5Cunderline%7B180%7D%5Ccdot%204%7D%7B%5Cunderline%7B180%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7Bs%3D4%7D)
if you do a quick calculation on what that angle is, you'll notice that it is exactly 1 radian, and an angle of 1 radian, has an arc that is the same length as its radius.
that's pretty much what one-radian stands for, an angle, whose arc is the same length as its radius.
Answer:
no
Step-by-step explanation:
Answer:it’s 3 and 8
Step-by-step explanation:
ZX is the diagonal :)
Hope this helped!
Answer:
f(x)=x^2
Step-by-step explanation:
if you wanted have a function where both of the robot's arms are in the air the function could be x to the power of any even number such f(x)=x^2, f(x)=x^4, f(x)=x^6, or even f(x)=x^10. And you could still do the same transformations with these equations.