Answer:
The grinding machine is used for roughing and finishing flat, cylindrical, and conical surfaces; finishing internal cylinders or bores; forming and sharpening cutting tools; snagging or removing rough projections from castings and stampings; and cleaning, polishing, and buffing surfaces.
Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV
Answer:
ω=314.15 rad/s.
0.02 s.
Explanation:
Given that
Motor speed ,N= 3000 revolutions per minute
N= 3000 RPM
The speed of the motor in rad/s given as

Now by putting the values in the above equation

ω=314.15 rad/s
Therefore the speed in rad/s will be 314.15 rad/s.
The speed in rev/sec given as

ω= 50 rev/s
It take 1 sec to cover 50 revolutions
That is why to cover 1 revolution it take

Answer:
0.023 Pa*s
Explanation:
The surface area of the side of the inner cylinder is:
A = π*d*l
A = π*0.15*0.75 = 0.35 m^2
At 200 rpm the inner cylinder has a tangential speed of:
u = w * r
u = w * d/2
w = 200 rpm * 2π / 60 = 20.9 rad/s
u = 20.9 * 0.15 / 2 = 1.57 m/s
The torque is of 0.8 N*m, this means that the force is:
T = F * r
F = T / r
F = 2*T / d
For Newtoninan fluids with two plates moving respect of each other with a fluid between the viscous friction force would be:
F = μ*A*u / y
Where
μ: viscocity
y: separation between pates
A: surface area of the plates
Then:
2*T / d = μ*A*u/y
Rearranging:
μ = 2*T*y / (d*A*u)
μ = 2*0.8*0.0012 / (0.15*0.35*1.57) = 0.023 Pa*s