Given:
10^10 electrons per second
To justify that coulomb is a very large unit for practical use, we need to convert the quantity of electron given to Coulombs:
From literature,
1 Coulomb is equivalent to 6.242×10^18 electrons<span>.
So,
= 10^10 electrons * (1 coulomb/</span><span>6.242×10^18</span> electrons) / second
<span>= 1.602 x 10^-9 coulumbs
This value is too small to be used in an actual setting.
</span><span>
</span>
Answer:
The kinetic energy of the more massive ball is greater by a factor of 2.
Explanation:
By conservation of energy, we know that the initial energy = final energy. At first, the balls are dropped from a height with no initial velocity so their initial energy is all potential energy. When they reach the bottom, all their energy is kinetic energy. So all of their energy is changed from potential to kinetic energy. This means that the ball with greater potential energy will have a greater kinetic energy.
Potential energy = mgh. Since g = gravity is a constant and h = height is the same, the only difference is mass. Since mass is directly proportional to potential energy, the greater the mass, the greater the potential energy, so the more massive ball has a greater initial potential energy and will have a greater kinetic energy at the bottom.
Additionally, let B1 = lighter ball with mass m and let B2 = heavier ball with mass m2. Since we know that intial potential energy = final kinetic energy. We can rewrite it as potential energy = kinetic energy = mass * gravity constant * height. For B1, it is mgh and for B2 it is 2mgh, so B2's kinetic energy is twice that of B1.
A series circuit has only one path for current,
while a parallel circuit has more than one.
Answer:
time is 3333.33 min or 55.55 hr
Explanation:
given data
reactor operating = 1 MW
negative reactivity = $5
power = 1 miliwatt
to find out
how long does it take
solution
we know here power coefficient that is
power coefficient = 
power coefficient = 1
so time required to reach power is
power = reactivity × time / power coefficient + reactor operating
1 ×
= -5 t / 1 + 1 × 
5t =
- 
t = 199999.99 sec
so time is 3333.33 min or 55.55 hr