STP (Standard Temperature and Pressure) has the following conditions:
Temperature = 273.15 K = 0°C
Pressure = 101325 Pa = 101.325 KPa = 1 atm
We also know that 1 mole = 6.022x10^23 molecules
Using the ideal gas equation: PV=nRT
n/V = P/RT
molecules/V = P*6.022x10^23/RT
molecules/V = 101325 Pa (6.022x10^23 molecules/mole)/ (8.314 Pa-m3/mol-K)(273.15K)
molecules/V = 7.339x10^27 molecules/m^3 - Final answer
The formula for final velocity is Speed= distance/time (s=d/t)
Velocity is another word for speed.
The basic relationship between voltage, resistance and current of an electrical device is given by Ohm's law:

where
V is the voltage
I is the current
R is the resistance
The hot plate in our problem is connected to a source of V=120 V and it has a resistance of

, therefore we can rearrange the previous equation to calculate the current through the device:
The only vertical forces are weight and normal force, and they balance since the surface is horizontal. The horizontal forces are the applied force (uppercase F) in the direction the block slides and the frictional force (lowercase f) in the opposite direction.
Apply Newton's 2nd Law in the horizontal direction:
ΣF = ma
F - f = ma
where f = µmg
F - µmg = ma
F = m(a +µg)
F = (20 kg)(1.4 m/s² + 0.28(9.8 m/s²)
F = 83 N
It’s either Asia or the America