Answer:
Temperature after ignition=7883.205 K
Explanation:
The number of moles is,
n=PV/RT
=(1.18x10^6)(47.9x10^-6)/8.314(325)
= 0.0209 moles
a) In this process volume is constant
Q=U
=nCv.dT
dT= Q/nCv
=1970/(1.5x8.314)(0.0209)
= 7558.205 K
The final temperature is,
= 7558.205+325
= 7883.205 K
21.75 Miles Per Hour
I got this by multiplying 7.25(3) because I know 20 minutes is 1/3 of 1 he
The independent variable would be the cleaning products.
The independent variable is the variable that you can manipulate. The change in the independent variable is not affected by other variables. So in this case, the independent variable would be the cleaning product because you will be changing it.
Answer:
400 kilogram
Explanation:
Force exerted is directly proportional to the mass of an object.
F=ma where m is mass and a is acceleration. Taking uniform acceleration on all objects then the larger the mass the higher the force and vice versa. Theredore, among the masses given, 400 kilograms is the largest hence it exerts the largest force at the bottom
So looking at the problem, you are going to want to start by finding a common denominator (1) in this case: yb, and combining like terms (2). You are then going to want to multiply both sides by (yb) as the reciprocal to the fractions (3).
1) 3x 6g
---- = ---
y b
2) 3xb 6gy
------ = -----
yb yb
3) 3xb 6gy
(yb) ------ = -----
yb yb
which becomes: 3xb = 6gy
So after this, things become much more simple, as all you have to do is isolate the (x), which can be done by dividing the entire equation by (3b).
3xb 6gy
----- = -----
3b 3b
where you will then find your answer of:
2gy
x = ----- (simplified by the GCM of 3)
b