1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
3 years ago
7

1.Suppose someone pulls a cart up a ramp a distance of 85cm along the ramp with a force of 15N.

Physics
1 answer:
Drupady [299]3 years ago
3 0

1. 12.75 J

Assuming that the force applied is parallel to the ramp, so it is parallel to the displacement of the cart, the work done by the force is

W=Fd

where

F = 15 N is the magnitude of the force

d = 85 cm = 0.85 m is the displacement of the cart

Substituting in the formula, we get

W=(15 N)(0.85 m)=12.75 J


2. 10.6 N

In this part, the cart reaches the same vertical height as in part A. This means that the same work has been done (because the work done is equal to the gain in gravitational potential energy of the object: but if the vertical height reached is the same, then the gain in gravitational potential energy is the same, so the work done must be the same).

Therefore, the work done is

W=Fd=12.75 J

However, in this case the displacement is

d = 120 cm = 1.20 m

Therefore, the magnitude of the force in this case is

F=\frac{W}{d}=\frac{12.75 J}{1.20 m}=10.6 N

You might be interested in
When a bicycle coasts uphill, it moves slower and slower as it climbs. Why?
astra-53 [7]

Letter B because it is gaining more potential energy as it SLOWLY climbs up the hill.

the less motion the more potential energy there is

6 0
3 years ago
Read 2 more answers
A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At the highest poin
tekilochka [14]

Answer:

a) The fragment speeds of 0.3 kg is 33.3 m / s on the y axis

                                         0.7 kg is 109.4 ms on the x axis

b)  Y = 109.3 m

Explanation:

This is a moment and projectile launch exercise.

a) Let's start by finding the initial velocity of the projectile

       sin 40 = voy / v₀

       v_{oy} = v₀ sin 40

       v_{oy} = 50.0 sin40

       v_{oy} = 32.14 m / s

       cos 40 = v₀ₓ / V₀

       v₀ₓ = v₀ cos 40

       v₀ₓ = 50.0 cos 40

       v₀ₓ = 38.3 m / s

Let us define the system as the projectile formed t all fragments, for this system the moment is conserved in each axis

Let's write the amounts

Initial mass of the projectile M = 2.0 kg

Fragment mass 1 m₁ = 1.0 kg and its velocity is vₓ = 0 and v_{y} = -10.0 m / s

Fragment mass 2 m₂ = 0.7 kg moves in the x direction

Fragment mass 3 m₃ = 0.3 kg moves up (y axis)

Moment before the break

X axis

     p₀ₓ = m v₀ₓ

Y Axis y

    p_{oy} = 0

After the break

X axis

   p_{fx} = m₂ v₂

Axis y

     p_{fy} = m₁ v₁ + m₃ v₃

Let's write the conservation of the moment and calculate

Y Axis  

     0 = m₁ v₁ + m₃ v₃

Let's clear the speed of fragment 3

     v₃ = - m₁ v₁ / m₃

     v₃ = - (-10) 1 / 0.3

     v₃ = 33.3 m / s

X axis

     M v₀ₓ = m₂ v₂

     v₂ = v₀ₓ M / m₂

     v₂ = 38.3  2 / 0.7

     v₂ = 109.4 m / s

The fragment speeds of 0.3 kg is 33.3 m / s on the y axis

                                         0.7 kg is 109.4 ms on the x axis

b) The speed of the fragment is 33.3 m / s and has a starting height of where the fragmentation occurred, let's calculate with kinematics

       v_{fy}² = v_{oy}² - 2 gy

       0 =  v_{oy}²-2gy

       y =  v_{oy}² / 2g

       y = 32.14² / 2 9.8

       y = 52.7 m

This is the height where the break occurs, which is the initial height for body movement of 0.3 kg

      v_{f}² =  v_{y}² - 2 g y₂

      0 =  v_{y}² - 2 g y₂

     y₂ =  v_{y}² / 2g

     y₂ = 33.3²/2 9.8

     y₂ = 56.58 m

Total body height is

      Y = y + y₂

      Y = 52.7 + 56.58

     Y = 109.3 m

8 0
3 years ago
Allison wants to determine the density of a bouncing ball. which metric measurements must she use?
lubasha [3.4K]
Density depends on mass and volume so option D is correct answer. Hope this helps!
3 0
4 years ago
Yellow-green light has a wavelength of 560 nm. What is its frequency?
Natasha2012 [34]
5.4 x 1014Hz
wavelength x frequency = the speed of light
7 0
3 years ago
Read 2 more answers
Two round concentric metal wires lie on a tabletop, one inside the other. The inner wire has a diameter of 21.0 cm and carries a
Burka [1]

Solution :

a). B at the center :

     $=\frac{u\times I}{2R}$

Here, one of the current is in the clockwise direction and therefore, the other current must be in the clockwise direction in order to cancel out the effect of the magnetic field that is produced by the other.

Therefore, the answer is ANTICLOCKWISE or COUNTERCLOCKWISE

b). Also, the sum of the fields must be zero.

Therefore,

$\left(\frac{u\times I_1}{2R_1}\right) + \left(\frac{u\times I_2}{2R_2}\right) = 0$

So,

$\frac{I_1}{d_1}= \frac{I_2}{d_2}$

$=\frac{16}{21}=\frac{I_2}{32}$

$I_2=24.38 $ A

Therefore, the current in the outer wire is 24.38 ampere.

3 0
3 years ago
Read 2 more answers
Other questions:
  • If the number of homes with a pet dog is equal to 250, how many total homes are repersented by the chart?
    11·1 answer
  • Figure 1.18 (Chapter 1) shows the Hoover Dam Bridge over
    8·1 answer
  • Anyone! Help me! (:o
    5·2 answers
  • A jet plane flying 600 m/s experiences an acceleration of 4.0 g when pulling out of the circular section of a dive. What is the
    12·1 answer
  • a horizontal force of 100N is required to push a crate across a factory floor at a constant speed. What is the net force acting
    8·1 answer
  • A projectile is shot horizontally at 23.4 m/s from the roof of a building 55.0 m tall. What is the time necessary for the projec
    7·1 answer
  • *Please Help!
    7·1 answer
  • The flow of electric current through a gas without any external influence (ionizer) is called
    11·1 answer
  • What is the energy of a photon with a frequency of 3. 6 × 1015 hz? planck’s constant is 6. 63 × 10–34 j•s.
    8·1 answer
  • what is our best hypothesis for why all the planets in our solar system orbit in the same direction as the sun rotates?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!