Answer: A student walks 50 meters east, 40 meters north, 35 meters east, and then 20 m south. Then the magnitude and direction of the student's total displacement will be 87.32 m along the direction of AD or in east-south direction.
Explanation: To find the correct answer, we need to know about the Displacement of a body in motion.
<h3>What is displacement of a body in motion?</h3>
- The displacement is the shortest distance between initial and final positions of a body.
- It's a vector quantity, and can positive, negative, or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
<h3>How to solve the problem?</h3>
- At first, we can draw a diagram showing the motion of the body.
- From the diagram, the displacement of the body will be equal to the distance between point A and D.
- To solve this, we can use Pythagoras theorem.

Thus, from the above calculations, we can conclude that, the displacement of the body will be equal to 87.32 m along the direction of AD or in east-south direction.
Learn more about the Displacement here:
brainly.com/question/28020108
#SPJ4
The popular GPS devices that people use to find directions while driving use "Global Navigation Satellite System (GNSS)".
<u>Explanation:</u>
The umbrella term for all global satellite tracking systems is GNSS i.e Global Satellite Navigation System. This involves satellite constellations circulating over the surface of the earth and continuous signal transmission that allow users to evaluate their location.
A satellite array of 18–30 medium Earth Orbit (MEO) satellites distributed across several orbital planes typically achieves greater coverage for each network. The specific systems differ, but use > 50 ° orbital inclinations and approximately twelve hours orbital cycles.
I think F= mv²/r
And F=ma
So, ma = mv²/r
a = v²/r
a = 100/5
a = 20 m/s
The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1
Answer:
i)-6.25m/s
ii)18 metres
iii)26.5 m/s or 95.4 km/hr
Explanation:
Firstly convert 90km/hr to m/s
90 × 1000/3600 = 25m/s
(i) Apply v^2 = u^2 + 2As...where v(0m/s) is the final speed and u(25m/s) is initial speed and also s is the distance moved through(50 metres)
0 = (25)^2 + 2A(50)
0 = 625 + 100A....then moved the other value to one
-625 = 100A
Hence A = -6.25m/s^2(where the negative just tells us that its deceleration)
(ii) Firstly convert 54km/hr to m/s
In which this is 54 × 1000/3600 = 15m/s
then apply the same formula as that in (i)
0 = (15)^2 + 2(-6.25)s
-225 = -12.5s
Hence the stopping distance = 18metres
(iii) Apply the same formula and always remember that the deceleration values is the same throughout this question
0 = u^2 + 2(-6.25)(56)
u^2 = 700
Hence the speed that the car was travelling at is the,square root of 700 = 26.5m/s
In km/hr....26.5 × 3600/1000 = 95.4 km/hr