A nuclear reaction in which a heavy nuclear splits spontaneously or on impact with another particle with the release of energy- fission
A nuclear reaction in which atomic nucleus with the release of energy-fusion
The energy harnessed in nuclei is released in nuclear reaction. Fission is the splitting of a heavy nucleus into lighter nuclei and fusion is the combining of nuclei to form a bigger and heavier nucleus
From the given balanced equation we have find out the amount (in gm) of Ag formed from 5.50 gm of Ag₂O.
2Ag₂O(s) → 4Ag (s) + O₂ (g)
We know, molecular mass of Ag₂O= 231.7 g/mol, and atomic mass of Ag= 107.8 g/mol. Given, mass of Ag₂O=5.50 gm. Number moles of Ag₂O=
= 0.0237 moles.
From the balanced chemical reaction we get 2 (two) moles of Ag₂O produces 4 (four) moles of Ag. So, 0.0237 moles of Ag₂O produces
moles=0.0474 moles of Ag= 0.0474 X 107.8 g of Ag=5.11g Ag.
Therefore, 5.50 g Ag₂O produces 5.11 g of Ag as per the given balanced chemical reaction.
Answer:
1 mole of CaC₂ will produce 26g of C₂H₂ or 64.1g of CaC₂ will produce 26g of C₂H₂
Explanation:
Hello,
To solve this question, we'll require a balanced chemical equation of reaction between calcium carbide and water.
Equation of reaction
CaC₂ + 2H₂O → Ca(OH)₂ + C₂H₂
Molar mass of calcium carbide (CaC₂) = 64.1g/mol
Molar mass of water (H₂O) = 18g/mol
Molar mass of calcium hydroxide (Ca(OH)₂) = 74g/mol
Molar mass of ethyne (C₂H₂) = 26g/mol
From the equation of reaction, 1 mole of CaC₂ will produce 1 mole of C₂H₂
1 mole of CaC₂ = mass / molar mass
Mass = 1 × 64.1
Mass = 64.1g
1 mole of C₂H₂ = mass / molar mass
Mass = 1 × 26
Mass = 26g
Therefore, 1 mole of CaC₂ will produce 26g of C₂H₂
Note: this is a hypothetical calculation since we were not given the initial mass of CaC₂ that starts the reaction
Yes I think he is what’s ur snap?
Go to the spanish site because I don’t think people here would be able to answer