This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more:
Answer is: Increased pressure would increase the rate of forming water vapor.
According to Le Chatelier's Principle, the position of equilibrium moves to counteract the change, the position of equilibrium will move so that the concentration of products (water waper) of chemical reaction increase, if:
1) decrease temperature, because this is exothermic reaction (ΔH is negative).
2) increase concentration of reactants (oxygen and hydrogen).
3) increase pressure of the system, so reaction moves to direction where is less molecules.
Answer:
D)The sound quality for these waves cannot be compared.
Explanation:
I've done it on e2020
Most scientific questions are developed from Observations.
Molar mass of Na2SO4*10H2O is 322.1949 g/mol