Answer:
1. Decreases,
2. Increases,
3. Increases
Explanation:
The heat which is a product of sun's energy, is transferred from the sun to the earth through radiation, conduction or convention. This heat passes through the earth atmosphere, then warms it , before becoming heat energy.
Therefore, Heat is transferred from the sun to the earth via electromagnetic waves . Because of this transfer, the entropy of the sun DECREASES, the entropy of the earth INCREASES and the entropy of the sun-earth system INCREASES.
Kinetic energy = (1/2) (mass) (speed)²
The rock's kinetic energy is not
(1/2) (4 kg) (10 m/s)²
= (1/2) (4 kg) (100 m²/s²)
= 200 Joules .
It may be more, or it may be less. The only thing
we can be sure of is that it is not 200 Joules.
Answer:
The photoelectric effect is a phenomenon in which the photoelectrons are emitted from the metal when an incident electromagnetic wave hits the metal. The incident light should have a threshold frequency to meet the work function of the metal
The rms speed of the molecules of gas A is twice that of gas B. The molecular mass of A is one fourth to that of B.
Answer: Option B
<u>Explanation:</u>
Measuring the speed of particles at a given point in time results in a large distribution of values. Some molecules can move very slowly, others very fast, and because they are still moving in different directions, the speeds may be zero. (Velocity, vector quantity that corresponds to the speed and direction of the molecule.)
To correctly estimate the average velocity, you must take the squares of the mean velocity and take the square root of this value. This is known as the root mean square (rms) velocity and is shown as follows:

Where,
M – Gas’s molar mass
R – Molar mass constant
T – Temperature (in Kelvin)
Given data is rms speed for gas molecule A is twice that of gas molecule B. So,

Therefore, equating the molecule’s rms speed formula for both A and B,

On squaring both sides, we get,

By solving the above equations, we get,

Answer:
1 point is earned for stating that the conservation of energy should be applied to this situation.
1 point is earned for stating that the conservation of momentum should be applied to this situation.
Example Response:
Students will need to use both conservation of momentum (for the collision) and conservation of energy (for the slide down the ramp) to be able to determine the relationship between the release height of block X and the speed at which the two-block system travels after they collide and stick together.
Explanation:
Please say thank you.