Answer:
27.1m/s
Explanation:
Given parameters:
Height of the building = 30m
Initial velocity = 12m/s
Unknown:
Final velocity = ?
Solution:
We apply one of the kinematics equation to solve this problem:
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 12² + (2 x 9.8 x 30)
v = 27.1m/s
Frequency can be found by counting the number of troughs per second in a wave diagram.
Answer:
Q₁ = Q₂ = 8.84 x 10⁻⁹ C
Explanation:
given,
mass of ball, m = 0.16 g = 1.6 x 10⁻⁴ Kg
ball each other, r = 6.8 cm
Weight of the ball
F_w = m g
F_w = 1.6 x 10⁻⁴ x 9.8
F_w = 1.56 x 10⁻³ N
The tension in each string is a force directed along the length of the string and is the hypotenuse of a right triangle.
we have to find the horizontal component of the forces.
The length of the string,L is 35 cm so, it will be the hypotenuse.
θ be the angle made with imaginary vertical line and the string.
now,
θ = 5.57°
horizontal component of the force = ?
vertical component of force,F_v = 1.56 x 10⁻³ N


F_h = 1.52 x 10⁻⁴ N
now, each ball will be repelled by
F = 1.52 x 10⁻⁴ N
now calculation of charges

Q₁ = Q₂ because both charge are same

Q² = 7.809 x 10⁻¹⁷
Q = 8.84 x 10⁻⁹ C
hence the change on the balls were Q₁ = Q₂ = 8.84 x 10⁻⁹ C
In pounds? Cuz if so 2.2 x 4.3 = 9.46
Pressure outside of a spacecraft is different from pressure inside the spacecraft. If it is not airtight. It will cause an explosion due to fast pressure change!