Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M
This question is very unspecific, but it is probably the Mantle. If that is wrong try Crust.<span />
1) reaction coordinate is : <span>b.the plot of the reaction progress as a function of time
2) </span>ΔG⁰ : <span>c.the free energy of the reaction
3) </span>ΔG⁺+ : <span>a.the higher point on the energy curve</span>
The moles of HCl are required to neutralized aqueous solution of the 0.03 KoH
KOH + HCl = KCl + H2O
by use mole ratio between KOH to HCl which is 1:1 the moles Of HCl is also 0.03 moles
100ml volume of 0.0150m hcl solution is requires to titrate 150ml of a 0.0100m caoh2 solution.
Dilution is a solution of decreasing the concentration of a solute in the solution by adding more solvent to the solution. We can use the expression for dilute formula,
C1 V1 =C2 V2
where C1 is the initial concentration,C2 is the final concentration,V1 is the initial volume and V2 is the final volume. Here given, volume of 0.0150M(C1) HCL solution is required to titrate 150ml(V2) of a 0.0100M(C1) Caoh2 solution.
While diluting a solution from a high concentration substance to a low concentration substance we always use the formula of dilution.so, putting all value give in the expression we get the volume of the final concentration.
V1= C2 V2/ C1
= 0.0100m . 150ml /0.0150M
= 100ml
The volume of the hcl solution is 100ml.
To learn more about dilution formula please visit:
brainly.com/question/7208939
#SPJ4