Streak. It couldn't be hardness because some minerals are soft and metallic, and some are hard and metallic. Also, it can't be luster, because most gems are minerals, and most luster, but they're not metallic. And it can't be magnetism, because magnetite, the only magnetic mineral, is not really metallic.
Hydrocarbons contain only Carbon and hydrogen.
Hope this helps!
Answer:
C₂H₃O
Explanation:
From the question given above, the following data were obtained:
Carbon (C) = 48.8383%
Hydrogen (H) = 8.1636%
Oxygen (O) = 43.1981%
Empirical formula =?
The empirical formula of the compound can be obtained as follow:
C = 48.8383%
H = 8.1636%
O = 43.1981%
Divide by their molar mass
C = 48.8383 / 12 = 4.07
H = 8.1636 / 1 = 8.1636
O = 43.1981 / 16 = 2.7
Divide by the smallest
C = 4.07 / 2.7 = 2
H = 8.1636 / 2.7 = 3
O = 2.7 /2.7 = 1
Thus, the empirical formula of the compound is C₂H₃O
To solve this, we can use two equations.
t1/2 = ln 2 / λ = 0.693 / λ
where, t1/2 is half-life and λ is the decay constant.
t1/2 = 10 min = 0.693 / λ
Hence, λ = 0.693 / 10 min - (1)
Nt = Nο e∧(-λt)
Nt = amount of atoms at t =t time
Nο= initial amount of atoms
t = time taken
by rearranging the equation,
Nt/Nο = e∧(-λt) - (2)
From (1) and (2),
Nt/Nο = e∧(-(0.693 / 10 min) x 20 min)
Nt/Nο = 0.2500
Percentage of remaining nuclei = (nuclei at t time / initial nuclei) x 100%
= (Nt/Nο ) x 100%
= 0.2500 x 100%
= 25.00%
Hence, Percentage of remaining nuclei is 25.00%
Answer:
The pressure of the gas would be 3.06 atm
Explanation:
Amonton's law states that the pressure is directly proportional to the absolute temperature of a gas under constant volume. The equation is:
P1 / T1 = P2 / T2
<em>Where P1 is the initial pressure = 3.16atm</em>
<em>T1 is initial absolute temperature = 273.15 + 32.2°C = 305.35K</em>
<em>P2 is our incognite</em>
<em>And T2 is = 273.15 + 22.9°C = 296.05K</em>
<em />
Replacing:
3.16atm / 305.35K = P2 / 296.05K
3.06 atm = P2
<h3>The pressure of the gas would be 3.06 atm</h3>