The moment of inertia of a uniform solid sphere is equal to 0.448
.
<u>Given the following data:</u>
Mass of sphere = 7 kg.
Radius of sphere = 0.4 meter.
<h3>How to calculate moment of inertia.</h3>
Mathematically, the moment of inertia of a solid sphere is given by this formula:

<u>Where:</u>
- I is the moment of inertia.
Substituting the given parameters into the formula, we have;

I = 0.448
.
Read more on inertia here: brainly.com/question/3406242
Explanation:
A worker picks up the bag of gravel. We need to find the speed of the bucket after it has descended 2.30 m from rest. It is case of conservation of energy. So,

h = 2.3 m

So, the speed of the bucket after it has descended 2.30 m from rest is 6.71 m/s.
Answer:
Yes
Explanation:
When an object has more mass it takes more gravity to keep it down therefore producing friction which in return reduces the amount of kinetic energy created. A change in an object's speed has an greater effect on its kinetic energy. than a change in its mass has, because kinetic energy is proportional to.
In a limited government, the power of government to intervene in the exercise of civil liberties is restricted by law, usually in a written constitution. It is a principle of classical liberalism, free market libertarianism, and some tendencies of liberalism and conservatism in the United States
- confidence
-good morals
- attentive
- cooperative
- leader