A small boy is playing with a ball on a stationary train. If he places the ball on the floor of the train, when the train starts moving the ball moves toward the back of the train. This happened due to inertia
An object at rest remains at rest, or if in motion, remains in motion unless a net external force acts on it .
When a train starts moving forward, the ball placed on the floor tends to fall backward is an example of inertia of rest. Due to the reason that the lower part of the ball is in contact with the surface and rest of the part is not . As the train starts moving, its lower part gets the motion as the floor starts moving but the upper part will remain as it is as it is not in contact with the floor , hence do not attain any motion due to the inertia of rest simultaneously i.e. it tends to remain at the same place.
To learn more about inertia here :
brainly.com/question/11049261
#SPJ1
Answer:
Final angular velocity is 35rpm
Explanation:
Angular velocity is given by the equation:
I1w1i + I2w2i = I1w1f -I2w2f
But the two disks are identical, so Ii =I2
wf can be calculated using
wf = w1i - w2i/2
Given: w1i =50rpm w2i= 30rpm
wf= (50 + 20) / 2
wf= 70/2 = 35rpm
Answer:
The wave speed is calculated below:
Explanation:
Given,
number of waves passed per minute = 8
time period = 1 minute = 60 s
distance between successive wave crests = 20 m
waves passing interval per second =

Now,
wave speed = 20 m ×

=
m/s
= 2.67 m/s
Hence the wave speed is 2.67 m/s.
The word to fill in the blank is "equal". Because the time taken to rotate (spin on its axis) is equal to the time of revolution (going around the earth), this means that both have the same rate of angular rotation. So for every bit that the moon goes around its orbit around earth, the moon itself rotates accordingly to present the exact same side to earth.