Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546
Answer:
False
Explanation:
Lead sulfate is insoluble in water and sinks in water
(sorry if it's wrong)
Answer:
The entropy decreases.
Explanation:
The change in the standard entropy of a reaction (ΔS°rxn) is related to the change in the number of gaseous moles (Δngas), where
Δngas = n(gaseous products) - n(gaseous reactants)
- If Δngas > 0, the entropy increases
- If Δngas < 0, the entropy decreases.
- If Δngas = 0, there is little or no change in the entropy.
Let's consider the following reaction.
2 H₂(g) + O₂(g) ⟶ 2 H₂O(l)
Δngas = 0 - 3 = -3, so the entropy decreases.