Answer:
2.1 atm
Explanation:
We are given the following variables to work with:
Initial pressure (P1): 2.5 atm
Initial temperature (T1): 320 K
Final temperature (T2): 273 K
Constant volume: 7.0 L
We are asked to find the final pressure (P2). Since volume is constant, we want to choose a gas law equation that relates initial pressure and temperature to final pressure and temperature. Gay-Lussac's law does this:

We can rearrange the law algebraically to solve for
.

Substitute your known variables and solve:

Are you speaking of a density gradient, in which a more concentrated solution moves below a less concentrated solution?
In that case, the more concentrated solution has the greater density, and it will gradually sink below the less concentrated solution.
In the same way, a stone will sink in water, which is less dense than the stone.
Particles will have more energy and will vibrate really fast.
(Hope this helps)
Whats the question? Im not sure what your asking