<span>When temperature is increased,
the rate of dissolving increases. The kinetic energy of the molecules of the
solute and solvent molecules is high thereby increasing their contact. An example
is mixing powdered sugar to the water. When you add water to the sugar, the
dissolving process is slow. However, when you increase the temperature of the
water by boiling it, the sugar dissolves immediately. </span>
Answer:
E_total = 1.30 10¹⁰ C / m²
Explanation:
The intensity of the electric field is
E = k q / r²
on a positive charge proof
The total electric field at the midpoint is
as q₁= 6 10⁻⁶ C the field is outgoing to the right
for charge q₂ = -3 10⁻⁶ C, the field is directed to the right, therefore
E_total = E₁ + E₂
E_total = k q₁ / r₁² + k q₂ / r₂²
r₁ = r₂ = r = 4 10⁻² m
E_total = k/r² (q₁ + q₂)
we calculate
E_total = 9 10⁹ / (4 10⁻²)² (6.0 10⁻⁶ +3.0 10⁻⁶)
E_total = 1.30 10¹⁰ C / m²
Answer:
16.6 kJ/°C
Explanation:
given,
Amount of heat absorbed = 45 kJ
initial temperature, T₁ = 25.5°C
final temperature, T₂ = 28.2°C
change in temperature = T₂ - T₁
= 28.2 - 25.5 = 2.7° C



Heat capacity of the object is equal to 16.6 kJ/°C
Answer:
<h3>The answer is 80 N</h3>
Explanation:
The force acting on the object can be found by using the formula

where
d is the distance
w is the work done
We have

We have the final answer as
<h3>80 N</h3>
Hope this helps you