Hey user!
your answer is here..
correct option is A. steel
we know that sounds travel faster in solid as compared to gas and liquids. in gas the molecules are very loosely packed and there is lot of space between so it takes more time to pass sound from each other. and in liquid, the molecules are closer as compared to gas hence it will be little faster and in solid, the molecules are very tightly packed so it will be the fastest. and among these options, steel is the only solid so the speed of sound in steel will be the fastest.
and note that the closer the molecules are to each other ( tightly packed ) makes the bond also tighter and less time to pass sound.
cheers!!
Answer:
as it travel through the space it behave like a wave and has an oscillating electric field components and an oscillating magnetic field
Answer:
1st statement is true
Explanation:
Here statement 1 is correct
Let think about it, if you push down the bar then you are lifting your weight off the pedals.
Obviously, this question does not take into account of racing bikes with straps on pedals, where you would push on one side and pull on the other to match your legs are doing, with straps your other leg can pull pedals upward.
For a cylinder that has both ends open resonant frequency is given by the following formula:

Where n is the resonance node, v is the speed of sound in air and L is the length of a cylinder.
The fundamental frequency is simply the lowest resonant frequency.
We find it by plugging in n=1:

To find what harmonic has to be excited so that it resonates at f>20Hz we simply plug in f=20 Hz and find our n:

We can see that any resonant frequency is simply a multiple of a base frequency.
Let us find which harmonic resonates with the frequency 20 Hz:

Since n has to be an integer, final answer would be 323.
Answer:
All the forces are opposite and equal and will give net force zero.
Explanation:
Mechanical equilibrium is the equilibrium in which the total force on the system is zero means the system is neither accelerated nor any kind of torque on the system.
The mechanical system can also be defined as the equal forces are applied in opposite direction in a system which cancels out all the forces, will give net force zero.
Therefore, when a box of chocolate bars is in mechanical equilibrium all the forces in this system are equal and the opposite which balances each other will give net force zero.