Answer:
I think c is correct options....
Explanation:
The resistance of the wire increases with increase in temperature. The resistance does not depend on the weight of the wire. Therefore, the correct option is weight.
The potential energy as it reaches a height of 0.63 meters is mgh
Since total mechanical energy is conserved, Set that equal to the initial kinetic energy which is 0.5mv^2
2*9.8*0.63 = 0.5*2*v^2
12.348 = v^2
3.51 = v
That's it's initial speed.
Answer:
12 m/s
Explanation:
Given data
Mass m= 1500kg
intitial velocity u= 20m/s
force F= 6000N
time t= 2 seconds
Required
The final velocity v
From
Ft= mΔv
Ft= m(u-v)
substitute
6000*2= 1500(20-v)
solve for v
12000= 30000- 1500v
collect like terms
12000-30000= -1500v
-18000= -1500v
divide both sides by -1500v
v= 18000/1500
v=12 m/s
Hence the velccity is 12 m/s
Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol