Answer:
Part a)

Part b)

Explanation:
As we know that by parallel axis theorem we will have

Part a)
here we know that for a stick the moment of inertia for an axis passing through its COM is given as

now if we need to find the inertia from its end then we will have



Part b)
here we know that for a cube the moment of inertia for an axis passing through its COM is given as

now if we need to find the inertia about an axis passing through its edge



270/70^2 = x/80^2
Cross multiply
270 (6400) = 4900x
x = 270(6400)/4900
352 and 32/49 feet
Hope this helps
Answer:
The correct answer should be
A. 20 Joules
Explanation:
I'm taking the K12 Unit Test: Energy - Part 1 right now
Answer:
0m/s²
Explanation:
Given parameters:
Initial velocity of the boat = 8m/s
Final velocity = 8m/s
Time taken = 4s
Unknown:
Acceleration of the boat = ?
Solution:
Acceleration is the rate of change of velocity with time.
It is mathematically expressed as;
A =
A is the acceleration
v is the final velocity
u is the initial velocity
t is the time taken
Insert the parameters and solve;
A =
= 0m/s²
The magnitude of the induced emf is given by:
ℰ = |Δφ/Δt|
ℰ = emf, Δφ = change in magnetic flux, Δt = elapsed time
The magnetic field is perpendicular to the loop, so the magnetic flux φ is given by:
φ = BA
B = magnetic field strength, A = loop area
The area of the loop A is given by:
A = πr²
r = loop radius
Make a substitution:
φ = B2πr²
Since the strength of the magnetic field is changing while the radius of the loop isn't changing, the change in magnetic flux Δφ is given by:
Δφ = ΔB2πr²
ΔB = change in magnetic field strength
Make another substitution:
ℰ = |ΔB2πr²/Δt|
Given values:
ΔB = 0.20T - 0.40T = -0.20T, r = 0.50m, Δt = 2.5s
Plug in and solve for ℰ:
ℰ = |(-0.20)(2π)(0.50)²/2.5|
ℰ = 0.13V