Answer:
It is b
Explanation:
The question tells you that the distance was increased 3 times the original distance, which means it was moved 3 times
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
Answer:
The resultant velocity of the helicopter is
.
Explanation:
Physically speaking, the resulting velocity of the helicopter (
), measured in meters per second, is equal to the absolute velocity of the wind (
), measured in meters per second, plus the velocity of the helicopter relative to wind (
), also call velocity at still air, measured in meters per second. That is:
(1)
In addition, vectors in rectangular form are defined by the following expression:
(2)
Where:
- Magnitude, measured in meters per second.
- Direction angle, measured in sexagesimal degrees.
Then, (1) is expanded by applying (2):
(3)

If we know that
,
,
and
, then the resulting velocity of the helicopter is:


The resultant velocity of the helicopter is
.
Rhythmic gymnastics, trampoline gymnastics, javelin, diving, volleyball, and more due to the lack of gravity on the moon.
Answer:
Metals are lustrous, malleable, ductile, good conductors of heat and electricity. Other properties include: State: Metals are solids at room temperature with the exception of mercury, which is liquid at room temperature (Gallium is liquid on hot days).