1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
3 years ago
6

A man that is 6 feet tall weighs 165 pounds use the information to predict the weight of a man that is 5 1/2 feet tall

Mathematics
1 answer:
Galina-37 [17]3 years ago
5 0
This man would be an approximate 154 pounds. 
My math: 
6 divided into 165 gives me the unit rate. (27.5)
unit rate (27.5) x the height (5.6) = 154 
I got the 5.6 because 12 inches in a foot 5 n' 1/2 feet is 5.6

You might be interested in
Kibble-Yum dog food costs $3.70 per pound. If Jenna spent a total $20.35 before tax on
alukav5142 [94]
It is 5.5
20.35/3.70=5.5 (division)
3.70•5.5=20.35(multiplication)
7 0
3 years ago
What percent of 150 is 162
Novay_Z [31]
To find a percentage of a number, you divide by that number.
So to find what percent of 150 162 is, you divide 162 by 150
162 ÷ 150 = 1.08
Now, to find the percentage, we take the decimal and move the point two places to the right.
1.08 = 108%
162 is 108% of 150.
5 0
3 years ago
2,17,82,257,626,1297 next one please ?​
In-s [12.5K]

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

4 0
3 years ago
Solve the equation.<br><br> y +8=-11<br><br> y=
Anit [1.1K]

Steps to solve:

y + 8 = -11

~Subtract 8 to both sides

y = -19

Best of Luck!

6 0
3 years ago
Order from least to greatest-- 43/50, 0.91, 7/8, 84%
ivanzaharov [21]
The order is .. 84%, 7/8, 43/50, 0.91 
7 0
3 years ago
Other questions:
  • La forma verbal de "La mitad de la suma de tres con un número" se escribe así: (3 + x)/2 , verdadero o falso?
    9·1 answer
  • I need help is it A b c or d
    13·1 answer
  • (3x^(3)-7x^(2)-8x+6)/(x-3)
    15·1 answer
  • Please Help! what is g(x)?​
    5·1 answer
  • How do i divide by zero
    14·2 answers
  • PLEASE HELP ME I WILL FAIL IF YOU DON'T
    10·1 answer
  • Help !!<br>I can't understand it <br>​
    11·2 answers
  • 1. Make a Prediction Write a rule that you can use to find the number of star beads in a bracelet when you know the number of mo
    11·1 answer
  • Area of trapezoid b1=5 b2= 7 h= 4
    6·1 answer
  • A pancake recipe calls for 4 eggs and 12 cups of flour. How many cups of flour would you need for a single egg?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!