The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
Answer:
Explanation:
Let the number of moles of oxygen = x
2H2 + O2 --> 2 H2O
x 13.3
Since the balance number for oxygen is 1 and the balance number for water is 2, you must set up a proportion. (Those balance numbers represent the number of moles).
1/x = 2 / 13.3 Cross Multiply
2*x = 13.3 Divide both sides by 2
2x/2 = 13.3/2
x = 6.65
You need 6.65 moles of oxygen.
C is the answer.
The temperature T<span> in degrees Celsius (°C) is equal to the temperature </span>T<span> in Kelvin (K) minus 273</span>°.
Mayonnaise is a heterogeneous mix. The correct answer is colloids.
Answer:
2.8x10^24
Explanation:
To convert moles to molecules, multiply the number of moles by Avagadro's number (6.02x10^23. Round if required.
4.62mol × 6.02x10^23 = 2.8x10^24