Answer:
The air will reach a higher final temperature because its specific heat is lower.
Explanation:
Considering ideal gas:
PV= RTn
T= 25.2°C = 298.2 K
P1= 637 torr = 0.8382 atm
V1= 536 mL = 0.536 L
:. R=0.082 atm.L/K.mol
:. n= (P1V1)/(RT) = ((0.8382 atm) x (0.536 L))/
((0.082 atmL/Kmol) x (298.2K))
:. n= O.0184 mol
Then,
P2= 712 torr = 0.936842 atm
V2 = RTn/P2 = [(0.082atmL/
Kmol) x (298.2K) x (0.0184mol) ]/(0.936842atm)
:.V2 = 0.4796 L
OR
V2 = 479.6 ml
Answer:
CaCl2
Explanation:
For every calcium there's 2 chlorine
Answer:
[N₂] = 0.032 M
[O₂] = 0.0086 M
Explanation:
Ideal Gas Law → P . V = n . R . T
We assume that the mixture of air occupies a volume of 1 L
78% N₂ → Mole fraction of N₂ = 0.78
21% O₂ → Mole fraction of O₂ = 0.21
1% another gases → Mole fraction of another gases = 0.01
In a mixture, the total pressure of the system refers to total moles of the mixture
1 atm . 1L = n . 0.082L.atm/mol.K . 298K
n = 1 L.atm / 0.082L.atm/mol.K . 298K → 0.0409 moles
We apply the mole fraction to determine the moles
N₂ moles / Total moles = 0.78 → 0.78 . 0.0409 mol = 0.032 moles N₂
O₂ moles / Total moles = 0.21 → 0.21 . 0.0409 mol = 0.0086 moles O₂