1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
3 years ago
9

A 4.4-µF capacitor is initially connected to a 5.1-V battery. Once the capacitor is fully charged the battery is removed and a 2

.0-Ω resistor is connected between the two terminals of the capacitor. Find the charge on the capacitor at the following times. (When entering units, use micro for the metric system prefix µ.)
Physics
1 answer:
Grace [21]3 years ago
4 0

Question is incomplete. Missing part:

Find the charge on the capacitor at the following times:

1) t = 0 mu S  

2) t = 1 mu S

3) t = 50 mu S

1) 22.4 \mu C

We start by calculating the initial charge on the capacitor. For this, we can use the following relationship:

C=\frac{Q_0}{V_0}

where

C is the capacitance

Q0 is the initial charge stored

V0 is the initial potential difference across the capacitor

When the capacitor is connected to the battery, we have:

C=4.4\mu F = 4.4\cdot 10^{-6}F

V_0 = 5.1 V

Solving for Q_0,

Q_0 = CV_0 = (4.4\cdot 10^{-6})(5.1)=2.24 \cdot 10^{-5} C = 22.4 \mu C

So, when the battery is disconnected, this is the charge on the capacitor at time t = 0.

2) 20.0\mu C

To find the charge on the capacitor at any other time t, we use the equation:

Q(t) = Q_0 e^{-\frac{t}{RC}}

where

Q_0 = 22.4 \mu C

t is the time

R=2.0 \Omega is the resistance

C=4.4\mu F is the capacitance

Therefore, at time t=1 \mu s, we have:

Q(t) = (22.4) e^{-\frac{1}{(2.0)(4.4)}}=20.0 \mu C

3) 0.08 \mu C

As before, we use again the equation:

Q(t) = Q_0 e^{-\frac{t}{RC}}

However, here the time to consider is

t=50 \mu C

Substituting into the formula,

Q(t) = (22.4) e^{-\frac{50.0}{(2.0)(4.4)}}=0.08 \mu C

You might be interested in
A 2 microcoulomb charge is placed at a distance of 0.25 m away from a 3.6 microcoulomb charge. Describe the type of electrostati
EleoNora [17]

Answer: 1.04N

Explanation:

Given

q1 = 2*10^-6C

q2 = 3.6*10^-6C

r = 0.25m

k = 9*10^9

Magnitude of electrostatic force can be calculated by using coulomb's law. Coulomb's law states that, "the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them."

F =(kq1q2) / r²

F = (9*10^9 * 2*10^-6 * 3.6*10^-6) / 0.25²

F = 0.0648/0.0625

F = 1.04N

The type of electrostatic force between the charges is the repulsive force

7 0
3 years ago
Read 2 more answers
Help me pleaseeee I will give you 42 points!<br> (I am dumb so that’s why)
Anit [1.1K]
Search each one of them up on GOOGLE it’s easier trust me
7 0
3 years ago
Read 2 more answers
A source emits sound uniformly in all directions. There are no reflections of the sound. At a distance of 12 m from the source,
yaroslaw [1]

Answer:

1.58 W

Explanation:

Since the sound spreads uniformly in all directions, it must be in a form of a circle with radius of 12 m. So the area of the circle is

A = \pi r^2 = \pi 12^2 = 452.389 m^2

From the intensity of the sound we can calculate the power at 12 m

P = AI = 452.389 * 3.5\times10^{-3} = 1.58 W

7 0
3 years ago
Mathphys :( im sorry i annoy you
Vitek1552 [10]

Answer:

4. 7.59276

Explanation:

Add up the x components:

Aₓ + Bₓ + Cₓ = 5 − 1.6 + 2.4 = 5.8

Add up the y components:

Aᵧ + Bᵧ + Cᵧ = -2.4 + 3.3 + 4 = 4.9

Use Pythagorean theorem to find the magnitude:

√(x² + y²)

√(5.8² + 4.9²)

√57.65

7.59276

3 0
3 years ago
The sphere that refers to Earths water is called the
soldier1979 [14.2K]
Earth Spheres. Earth's Spheres. Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called “spheres.” Specifically, they are the lithosphere (land), hydrosphere (water), biosphere (living things), and atmosphere (air).
6 0
3 years ago
Read 2 more answers
Other questions:
  • A system of pulleys is used to raise a load of bricks that weighs 1,700 newtons. The force applied to the pulley is 340 newtons.
    9·2 answers
  • I need help with the following three physics problems please!
    14·1 answer
  • The frequency of which type of electromagnetic wave is just higher than that of visible light?
    6·1 answer
  • When is the net force on an object equal to zero? A. When the object is in motion B. When the object is changing direction C. Wh
    5·1 answer
  • A car with speed v and an identical car with speed 2v both travel the same circular section of an unbanked road. If the friction
    7·1 answer
  • The Clean Air Act emphasizes that one way to prevent and reduce air pollution is to involve public participation true or false
    6·2 answers
  • What inference can be drawn from the following evidence? Specific atoms of carbon from a dead animal can be traced to the leaves
    6·1 answer
  • An electric field of intensity 3.25 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular plane 0.
    9·1 answer
  • A ball of 0.5kg slows down from 5m/s to 3m/s. Calculate the work done inthe process.
    6·1 answer
  • The briquette is better fuel than wood why give two reason​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!