Answer;
-Sensors
-Sensors are placed on dangerous machinery to detect motion, light, heat, pressure, or another stimulus. Their presence helps protect operators from injury while working on machines.
Explanation;
-Machinery, safety and factory floor sensors and switches help workers become more productive, efficient, and safe.
-Hazardous machines and systems are frequently equipped with safety elements (safety doors) with a locking mechanism to protect the operator. Their function is to prevent hazardous machine functions if the safety door is not closed and locked and to keep the safety door closed and locked until the risk of injury has passed.
Answer:

Explanation:
a) Fundamental frequency
A harmonic is an integral multiple of the fundamental frequency.


b) Wave speed
(i) Calculate the wavelength
In a fundamental vibration, the length of the string is half the wavelength.

(b) Calculate the speed
s



Answer:

vector with direction equal to the axis X.
Explanation:
We use the Gauss Law and the superposition law in order to solve this problem.
<u>Superposition Law:</u> the Total Electric field is the sum of the electric field of the first infinite sheet and the Electric field of the second infinite sheet:

<u>Thanks Gauss Law</u> we know that the electric field of a infinite sheet with density of charge σ is:

Then:

This electric field has a direction in the axis perpendicular to the sheets, that means it has the same direction as the axis X.
Explanation:
If the intensity of the yellow light increased, meaning more photons will strike the Potassium metal per unit area. This will cause more ejection of electrons from the metal and hence, the strength of current will also increase as we know that
I = Q/t, as the charge increase , the current will also increase.
Answer:
Specific heat at constant pressure is = 1.005 kJ/kg.K
Specific heat at constant volume is = 0.718 kJ/kg.K
Explanation:
given data
temperature T1 = 50°C
temperature T2 = 80°C
solution
we know energy require to heat the air is express as
for constant pressure and volume
Q = m × c × ΔT ........................1
here m is mass of the gas and c is specific heat of the gas and Δ
T is change in temperature of the gas
here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.
and here at constant pressure Specific heat is greater than the specific heat at constant volume,
so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is
Specific heat at constant pressure is = 1.005 kJ/kg.K
and
Specific heat at constant volume is = 0.718 kJ/kg.K