I electromagnets, the magnetic field is turned off when there is no induced current. So, electromagnets act as magnets only when current is induced in an insulated wire wrapped around a material mage of ferromagnetic material such as iron core rotating in a magnetic field.
So, option D is the correct one.
If you wanna know more about electromagnets, write down in comments {:
Answer:
it comes from your knowledge and the information you have to get the reason why that is the answer so you are putting together things that you already know what the new information you have
Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.
Answer:
Current needed = 704A
Explanation:
Using the fomula; torque(τ) = (I)(A)(B)Sinθ
Where B = uniform magnetic field
I = current and A = Area
Diameter = 19cm = 0.19m so, radius = 0.19/2 = 0.095m
Area(A) = πr^(2) = πr^(2)
= π(0.095)^(2) = 0.0284 m^(2)
Now, B(earth)= 5x10^-5 T
While, we can ignore the angle because it's insignificant since the angle of the wire is oriented for maximum torque in the earth's field.
Now, if we arrange the formula to solve for charge (I):
I = (τ)/(A)(B)
I = (1.0x10^-3) / (0.0284)(5x10^-5)
I = 704A
Magnitudes are measured by intensity so a 3.4 earthquake is much less stronger than a 4.5 earthquake it’s very literally when measuring them the higher the number the stronger it is