Answer: A bachelor's degree in mechanical engineering or electrical engineering.
Explanation:
A bachelor's degree in mechanical engineering or electrical engineering is typically required for solar engineering positions. In some areas, more advanced certification could be required. Degrees in industrial engineering, chemical engineering, and computer software engineering may also be helpful.
Hope this will help you!
Answer:
Answer to this question is option D i.e. unit price.
Explanation:
The unit price of the item can be understood as the price of a single product or one single commodity which forms a part of a group of items. When only one unit is to be sold then here comes the importance of 'unit price.' This is generally helpful in the retail sector where the products are bought in bulk after calculating the per-unit price of each commodity in that particular bulk.
Answer: both mm and inches on each dimension in a sketch (with the main dimension in one format and the other in brackets below it), in the way you can have dual dimensions shown when detailing an idw view.
personally think it would look a mess/cluttered with even more text all over the sketch environment, but everyone's differenent.
If it's any help - you know you can enter dimensions in either format? If you're working in mm you can still dimension a line and type "2in" and vice-versa. Probably know this already, but no harm saying it, just in case.
You can enter the units directly in or mm and Inventor will convert to current document settings (which you can change - maybe someone can come up with a simple toggle icon to toggle the document settings). Tools>Document Settings>Units
Unlike SolidWorks when you edit the dimension the original entry shows in the dialog box so it makes it easy to keep track of different units even if they aren't always displayed. (SWx does the conversion or equation and then that is what you get.)
I work quite a bit in inch and metric and combination (ex metric frame motor on inch machine) and it doesn't seem to be a real difficulty to me.
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ ![x^2_1](https://tex.z-dn.net/?f=x%5E2_1)
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs