1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
5

Using the celsius_to_kelvin function as a guide, create a new function, changing the name to kelvin_to_celsius, and modifying th

e function accordingly 1 def celsius_to_kelvin(value_celsius): value_kelvin -. 4 value_kelvin- value_celsius 273.15 return value_kelvin Your solution goes here 9 value_c 0.e 10 valuek=0.0 - 12 value_c 10.8 13 15 16 print (value-c, 'Cis', celsius-to-kelvin(value-c), "K.) valuek# 283.15 print (value-k, .İS', kelvin-to-celsíus (value-k), 'C') -

Engineering
1 answer:
aleksandr82 [10.1K]3 years ago
4 0

Answer:

# kelvin_to_celsius function is defined

# it has value_kelvin as argument

def kelvin_to_celsius(value_kelvin):

   # value_celsius is initialized to 0.0

   value_celsius = 0.0

   

   # value_celsius is calculated by

   # subtracting 273.15 from value_kelvin

   value_celsius = value_kelvin - 273.15

   # value_celsius is returned

   return value_celsius

   

# celsius_to_kelvin function is defined

# it has value_celsius as argument

def celsius_to_kelvin(value_celsius):

   # value_kelvin is initialized to 0.0

   value_kelvin = 0.0

   

   # value_kelvin is calculated by

   # adding 273.15 to value_celsius

   value_kelvin = value_celsius + 273.15

   # value_kelvin is returned

   return value_kelvin

   

value_c = 0.0

value_k = 0.0

value_c = 10.0

# value_c = 10.0 is used to test the function celsius_to_kelvin

# the result is displayed

print(value_c, 'C is', celsius_to_kelvin(value_c), 'K')

value_k = 283.15

# value_k = 283.15 is used to test the function kelvin_to_celsius

# the result is displayed

print(value_k, 'is', kelvin_to_celsius(value_k), 'C')

Explanation:

Image of celsius_to_kelvin function used as guideline is attached

Image of program output is attached.

You might be interested in
PLEASE HELP!!! ILL GIVE BRANLIEST *EXTRA POINTS* dont skip :((
Oksi-84 [34.3K]
The first one is the answer
8 0
3 years ago
Read 2 more answers
A furnace wall is to be built of 20-cm firebrick and building (structural) brick of same thickness. The thermal conductivities o
Norma-Jean [14]

Answer:

q=2313.04W/m^2

T=690.86°C

Explanation:

Given that

Thickness t= 20 cm

Thermal conductivity of firebrick= 1.6 W/m.K

Thermal conductivity of structural brick= 0.7 W/m.K

Inner temperature of firebrick=980°C

Outer temperature of structural brick =30°C

We know that thermal resistance

R=\dfrac{t}{KA}

These are connect in series

R=\left(\dfrac{t}{KA}\right)_{fire}+\left(\dfrac{t}{KA}\right)_{struc}

R=\dfrac{0.2}{1.6A}+\dfrac{0.2}{0.7A}\ K/W

R=\dfrac{23}{56A}\ K/W

Heat transfer

Q=\dfrac{\Delta T}{R}

Q=56A\times \dfrac{980-30}{23}\ W

So heat flux

q=2313.04W/m^2

Lets temperature between interface is T

Now by equating heat in both bricks

\dfrac{980-T}{\dfrac{0.2}{1.6A}}=\dfrac{T-30}{\dfrac{0.2}{0.7A}}

So T=690.86°C

6 0
3 years ago
The properties of the air in the inlet section with A1 = 0.25ab m2 in a converging-diverging channel are given as U1 = 25a,b m/s
NeX [460]

Answer:

nice cake

Explanation:

3 0
3 years ago
A 3 m aluminum pole is kept at a residential site for construction
Aliun [14]

Answer:

I don't know sorry

Explanation:

5 0
3 years ago
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
Other questions:
  • An air conditioner removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 6 kW. De
    5·1 answer
  • How does a carburetor work?
    7·1 answer
  • Assume the triac of an AC discrete output module fails in the shorted state. How would this affect the device connected to this
    5·1 answer
  • In a surface grinding operation, the wheel diameter = 8.0 in, wheel width = 1.0 in, wheel speed = 6000 ft/min, work speed = 40 f
    9·1 answer
  • What material property would still cause strain in a strain gauge that is positionedperpendicular to the direction of force if i
    6·1 answer
  • Select three functions of catalysts.
    9·1 answer
  • 2.
    7·1 answer
  • When was solar power envold ​
    8·2 answers
  • Describe the greatest power in design according to Aravena?
    15·1 answer
  • It is acceptable to mix used absorbents.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!