1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
9

(1) 1. (15 points/ 3 points each) (a) Draw the binary search tree that is created if the following numbers are inserted in the t

ree in the given order. 12 15 3 35 21 42 14

Engineering
1 answer:
Alex777 [14]3 years ago
6 0

Answer:

The binary search tree BST that is created is shown in the figure in the attached file

The missing part of the question is to draw the balanced binary search tree containing the same numbers given in the question.

You might be interested in
A __________ is an added note showing additional or more specific information.
xxMikexx [17]

Answer:

awnsers should be added to know to show additional

8 0
3 years ago
Can you solve this question​
Alecsey [184]

Answer:

eojcjksjsososisjsiisisiiaodbjspbcpjsphcpjajosjjs ahahhahahahahahahahahahahahahhhahahahaahahhahahahahaahahahahaha

6 0
2 years ago
Read 2 more answers
Technician A says the final drive assembly always has a gear ratio of 1:1. Technician B says the final drive assembly provides f
Olenka [21]

Answer:

Technician B only is correct

Explanation:

The last stage of gears found between the vehicle transmission system and the wheels is the final drive ratio. The function of the final drive gear assembly is to enable a gear reduction control stage to reduce the rotation per minute and increase the wheel torque, such that the vehicle performance can be adjusted and the final gear ratio can be between 3:1 and 4.5:1 not 1:1

Therefore, technician B only is correct

5 0
3 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
The steel bracket is used to connect the ends of two cables. if the allowable normal stress for the steel is sallow = 30 ksi, de
garri49 [273]

The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb

<h3>The static equilibrium is given as:</h3>

F = P (Normal force)

Formula for moment at section

M = P(4 + 1.5/2)

= 4.75p

Solve for the cross sectional area

Area = \frac{\pi d^{2} }{4}

d = 1.5

\frac{\pi *1.5^{2} }{4}

= 1.767 inches²

<h3>Solve for inertia</h3>

\frac{\pi *0.75^4}{4}

= 0.2485inches⁴

Solve for the tensile force from here

\frac{F}{A} +\frac{Mc}{I}

30x10³ = \frac{P}{1.767} +\frac{4.75p*0.75}{0.2485} \\\\

30000 = 14.902 p

divide through by 14.902

2013.15 = P

The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb

Read more on tensile force here: brainly.com/question/25748369

4 0
2 years ago
Other questions:
  • given the classes above, what output is produced by the following code? meg[] elements ={new Lois(), new Stewie(), new Meg(), ne
    15·1 answer
  • Anyone know sebastian from bb
    8·1 answer
  • What would be the most likely scale factor to use for an n-gauge model train setup? (An n-gauge layout uses locomotives that are
    8·1 answer
  • What are the four basic parts of process plan
    11·1 answer
  • Overview In C, a string is simply an array of characters. We have used literal strings all along – the stuff in between the quot
    11·1 answer
  • This is a multi-part question. Once an answer is submitted, you will be unable to return to this part As steam is slowly injecte
    15·1 answer
  • 1 kg of oxygen is heated from 20 to 120°C. Determine the amount of heat transfer required when this is done during a (a) constan
    7·1 answer
  • WHAT IS MEANT BY BJT AND FUNCTION OF BJT
    8·1 answer
  • A steel rod, which is free to move, has a length of 200 mm and a diameter of 20 mm at a temperature of 15oC. If the rod is heate
    10·1 answer
  • The only way to know if a design will work in real-world conditions is to build a model, or prototype, based on the plan. This i
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!