Answer:
overflow rate 20.53 m^3/d/m^2
Detention time 2.34 hr
weir loading 114.06 m^3/d/m
Explanation:
calculation for single clarifier



volume of tank



overflow rate =
Detention time
weir loading
The number of hectares of each crop he should plant are; 250 hectares of Corn, 500 hectares of Wheat and 450 hectares of soybeans
<h3>How to solve algebra word problem?</h3>
He grows corn, wheat and soya beans on the farm of 1200 hectares. Thus;
C + W + S = 12 ----(1)
It costs $45 per hectare to grow corn, $60 to grow wheat, and $50 to grow soybeans. Thus;
45C + 60W + 50S = 63750 -----(2)
He will grow twice as many hectares of wheat as corn. Thus;
W = 2C ------(3)
Put 2C for W in eq 1 and eq 2 to get;
C + 2C + S = 1200
3C + S = 1200 -----(4)
45C + 60(2C) + 50S = 63750
45C + 120C + 50S = 63750
165C + 50S = 63750 ------(5)
Solving eq 4 and 5 simultaneosly gives;
C = 250 and W = 500
Thus; S = 1200 - 3(250)
S = 450
Read more about algebra word problems at; brainly.com/question/13818690
Answer:
c = 18.0569 mm
Explanation:
Strategy
We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.
Given Data
Applied Torque
T = 750 N.m
Length of shaft
L = 1.2 m
Modulus of Rigidity
G = 77.2 GPa
Allowable Stress
г = 90 MPa
Maximum Angle of twist
∅=4°
∅=4*
/180
∅=69.813 *10^-3 rad
Required Diameter based on angle of twist
∅=TL/GJ
∅=TL/G*
/2*c^4
∅=2TL/G*
*c^4
c=
∅
c=18.0869 *10^-3 rad
Required Diameter based on shearing stress
г = T/J*c
г = [T/(J*
/2*c^4)]*c
г =[2T/(J*
*c^4)]*c
c=17.441*10^-3 rad
Minimum Radius Required
We will use larger of the two values
c= 18.0569 x 10^-3 m
c = 18.0569 mm
Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer:
B
Explanation:
This is a two sample t-test and not a matched pair t-test
null hypothesis(H0) will be that mean energy consumed by copper rotor motors is greater than or equal to mean energy consumed by aluminium rotor motors
alternate hypothesis(H1) will be that mean energy consumed by copper rotor motors is less than or equal to mean energy consumed by aluminium rotor motors.
So, option D is rejected
The hypothesis will not compare mean of differences of values of energy consumed by copper rotor motor and aluminium rotor motor.
Option A and C are also rejected