Answer:
<h2>b) 4230 J
</h2>
Explanation:
Step one:
given data
extension= 40cm
Spring constant K= 52.9N/cm
Step two:
Required
the Kinetic Energy KE
the expression to find the kinetic energy is
KE= 1/2ke^2
substituting our data we have
KE= 1/2*52.9*40^2
KE=0.5*52.9*1600
KE= 42320Joules
<u>The answer is b) 4230 J
</u>
If Earth's axis was "straight up and down" instead of tilted, then ...
<span>-- There would be no seasons.
-- The climate at any one place would be the same all year around.
-- The days would be the same length, everywhere,
and all year around.
-- So would the nights.
-- The sun would be up a little more than 12 hours every day.
It would be down a little less than 12 hours every day.
-- At the middle of the day, the sun would be at the same height
in the sky all year around, not higher in some months and lower
in others.
-- The equator would be the only place on Earth where the sun
could ever be directly over your head.
-- If you were at the north pole or the south pole, the sun would be
down on the horizon, and it would just go around and around you
every day. It would never rise or set, and it would never get any
higher or lower.
</span>
Answer:
2.30 × 10⁻⁸ N if the two electrons are in a vacuum.
Explanation:
The Coulomb's Law gives the size of the electrostatic force
between two charged objects:
,
where
is coulomb's constant.
in vacuum.
and
are the signed charge of the objects.
is the distance between the two objects.
For the two electrons:
.
.
.
The sign of
is negative. In other words, the two electrons repel each other since the signs of their charges are the same.
Answer:
20 m/s
Explanation:
The speed of a wave is given by:

where
is the wavelength
f is the frequency
v is the speed
For the wave in this problem,
f = 10 Hz is the frequency
is the wavelength
So the speed is
