Answer:
The thermal conductivity of the wall = 40W/m.C
h = 10 W/m^2.C
Explanation:
The heat conduction equation is given by:
d^2T/ dx^2 + egen/ K = 0
The thermal conductivity of the wall can be calculated using:
K = egen/ 2a = 800/2×10
K = 800/20 = 40W/m.C
Applying energy balance at the wall surface
"qL = "qconv
-K = (dT/dx)L = h (TL - Tinfinity)
The convention heat transfer coefficient will be:
h = -k × (-2aL)/ (TL - Tinfinty)
h = ( 2× 40 × 10 × 0.05) / (30-26)
h = 40/4 = 10W/m^2.C
From the given temperature distribution
t(x) = 10 (L^2-X^2) + 30 = 30°
T(L) = ( L^2- L^2) + 30 = 30°
dT/ dx = -2aL
d^2T/ dx^2 = - 2a
Answer:
Explanation:
Answer:
Explanation:
The half life is the time taken for half of a radioactive substance to disintegrate.
The shorter the half life, the larger the decay constant and the faster the decay process.
For a very large half life, it would take a very long time for the radioactive nuclide to decay to half.
With each half life reached, a new set of daughter cell is formed. Atoms that have short half life would decay rapidly. Every radionuclide has its own characteristic half-life.
If the number of half-lives increases, then the number of radioactive atoms decreases, because approximately half of the atoms' nuclei decay with each half-life. With this observation, we can hypothesise and conduct experiment to support the assertion that as the number of half-lives increases then the number of radioactive atoms decreases.
Any charged object can<span> exert the force upon other objects ... i think tell me if im right</span>
given that
mass of ball = 0.095 kg
initial velocity of ball towards the wall = 40 m/s
final velocity of the ball after it rebound = 30 m/s
now change in momentum is given as



So change in momentum will be 6.65 kg m/s
Answer:
0.125 m
Explanation:
Pressure in fluids is given as the product of density, height and acceleration due to gravity and expressed as
P=hdg
Where h is the height, d is density, g is acceleration due to gravity and P is pressure.
Making h the subject of formula then
h=P/dg
Given specific gravity of a substance, its density is equal to specific gravity multiplied by density of water. Taking density of pure water as 1000 kg/m³ then the density of reference fluid will be 1.05*1000=1050 kg/m³
Substituting pressure with 1.29*10³ pa as given then taking g as 9.81 m/s² then
H=1.29*10³÷(9.81*1050)=0.1252366389981068880151448958788408329692m
Rounded off, the height is approximately 0.125 m