Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps
We have that the instantaneous velocity of the
shuttlecock when it hits the ground is

From the question we are told
Assuming the acceleration is still -9.81 m/s2, what is the instantaneous velocity of the
shuttlecock when it hits the ground? Show your work below.
Generally the equation for acceleration is mathematically given as

Where
acceleration is still -9.81 m/s2,
Hence,

Therefore

For more information on this visit
brainly.com/question/12319416?referrer=searchResults
Answer:
No.
Explanation:
The only way a twist may be done is if the trans form of an alkene/alkyne is twisted into the cis form--only if/when the pi bond is brokwn.
It is talking about how from a different perspective things look different.
That picture should help.
Answer:
V₁ = 1.75 m³
Explanation:
Assuming the gas to be an ideal gas. At constant temperature, the relationship between the volume and temperature of an ideal gas is given by Boyle's Law as follows:

where,
P₁ = Initial Pressure of the Gas = 4 KPa
V₁ = Initial Volume of the Gas = ?
P₂ = Final Pressure of the Gas = 2 KPa
V₂ = Final Volume of the Gas = 3.5 m³
Therefore,

<u>V₁ = 1.75 m³</u>